[ad_1]

  • Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27:639–53.

    PubMed 

    Google Scholar 

  • Williams S, Raheim SA, Khan MI, Rubab U, Kanagala P, Zhao SS, Marshall A, Brown E, Alam U. Cardiac autonomic neuropathy in type 1 and 2 diabetes: epidemiology, pathophysiology, and management. Clin Ther. 2022;44(10):1394–416.

    CAS 
    PubMed 

    Google Scholar 

  • Fisher VL, Tahrani AA. Cardiac autonomic neuropathy in patients with diabetes mellitus: current perspectives. Diabetes Metab Syndr Obes. 2017;10:419–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen ST, Witte DR, Fleischer J, Andersen H, Lauritzen T, Jorgensen ME, Jensen TS, Pop-Busui R, Charles M. Risk factors for the presence and progression of cardiovascular autonomic neuropathy in type 2 diabetes: ADDITION-Denmark. Diabetes Care. 2018;41(12):2586–94.

    PubMed 

    Google Scholar 

  • Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.

    CAS 
    PubMed 

    Google Scholar 

  • Stranieri A, Abawajy J, Kelarev A, Huda S, Chowdhury M, Jelinek HF. An approach for Ewing test selection to support the clinical assessment of cardiac autonomic neuropathy. Artif Intell Med. 2013;58(3):185–93.

    PubMed 

    Google Scholar 

  • Chowdhury M, Nevitt S, Eleftheriadou A, Kanagala P, Esa H, Cuthbertson DJ, Tahrani A, Alam U. Cardiac autonomic neuropathy and risk of cardiovascular disease and mortality in type 1 and type 2 diabetes: a meta-analysis. BMJ Open Diabetes Res Care. 2021;9(2): e002480.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, Genuth S, Grimm RH, Corson MA, Prineas R, et al. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care. 2010;33(7):1578–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang M, Wang D, Coresh J, Selvin E. Trends in Diabetes Treatment and Control in U.S. Adults, 1999–2018. N Engl J Med. 2021;384(23):2219–28.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ford ES. Trends in the control of risk factors for cardiovascular disease among adults with diagnosed diabetes: findings from the National Health and Nutrition Examination Survey 1999–2008*. J Diabetes. 2011;3(4):337–47.

    PubMed 

    Google Scholar 

  • Davis WA, Gregg EW, Davis TME. Temporal trends in cardiovascular complications in people with or without type 2 diabetes: the Fremantle Diabetes Study. J Clin Endocrinol Metab. 2020;105(7):e2471–82.

    Google Scholar 

  • Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, Imperatore G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet. 2018;391(10138):2430–40.

    PubMed 

    Google Scholar 

  • Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514–23.

    CAS 
    PubMed 

    Google Scholar 

  • Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16.

    PubMed 

    Google Scholar 

  • Davis T, Bruce D, Davis W. Cohort profile: the Fremantle Diabetes Study. Int J Epidemiol. 2013;42(2):412–21.

    PubMed 

    Google Scholar 

  • Socio-economic indexes for areas. http://www.abs.gov.au/websitedbs/censushome.nsf/home/seifa.

  • Krakauer NY, Krakauer JC. Anthropometrics, metabolic syndrome, and mortality hazard. J Obes. 2018;2018:9241904.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Freeman R, Wieling W, Axelrod F, Benditt D, Benarroch E, Biaggioni I, Cheshire W, Chelimsky T, Cortelli P, Gibbons C, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res. 2011;21(2):69–72.

    PubMed 

    Google Scholar 

  • Pop-Busui R, Backlund JC, Bebu I, Braffett BH, Lorenzi G, White NH, Lachin JM, Soliman EZ, Group DER. Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients. J Diabetes Investig. 2022;13(1):125–33.

    CAS 
    PubMed 

    Google Scholar 

  • Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, Sommer C, Cleary PA, Lachin JM, Herman WH, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation. 2009;119(22):2886–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ewing D, Campbell I, Clarke B. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Ann Intern Med. 1980;92(2_Part_2):308–11.

    CAS 
    PubMed 

    Google Scholar 

  • Ziegler D, Laux G, Dannehl K, Spuler M, Muhlen H, Mayer P, Gries F. Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabetic Med. 1992;9(2):166–75.

    CAS 
    PubMed 

    Google Scholar 

  • Gelber DA, Pfeifer M, Dawson B, Schumer M. Cardiovascular autonomic nervous system tests: determination of normative values and effect of confounding variables. J Auton Nerv Syst. 1997;62(1–2):40–4.

    CAS 
    PubMed 

    Google Scholar 

  • Risk M, Bril V, Broadbridge C, Cohen A. Heart rate variability measurement in diabetic neuropathy: review of methods. Diabetes Technol Ther. 2001; 3(1):63–76.

  • Spallone V, Bellavere F, Scionti L, Maule S, Quadri R, Bax G, Melga P, Viviani G, Esposito K, Morganti R, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21(1):69–78.

    CAS 
    PubMed 

    Google Scholar 

  • Levey A, Bosch J, Lewis J, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.

    CAS 
    PubMed 

    Google Scholar 

  • Davis WA, Hamilton E, Davis TME. Temporal trends in distal symmetric polyneuropathy in type 2 diabetes: the Fremantle Diabetes Study. J Clin Endocrinol Metab. 2023;109:e1083–94.

    PubMed Central 

    Google Scholar 

  • Holman C, Bass A, Rouse I, Hobbs M. Population-based linkage of health records in Western Australia: development of a health services research linked database. Aust N Z J Public Health. 1999;23(5):453–9.

    CAS 
    PubMed 

    Google Scholar 

  • Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115(3):387–97.

    PubMed 

    Google Scholar 

  • Hu MX, Milaneschi Y, Lamers F, Nolte IM, Snieder H, Dolan CV, Penninx B, de Geus EJC. The association of depression and anxiety with cardiac autonomic activity: the role of confounding effects of antidepressants. Depress Anxiety. 2019;36(12):1163–72.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pop-Busui R, Braffett BH, Zinman B, Martin C, White NH, Herman WH, Genuth S, Gubitosi-Klug R, Group DER. Cardiovascular autonomic neuropathy and cardiovascular outcomes in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Care. 2017;40(1):94–100.

    Google Scholar 

  • Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaze AD, Yuyun MF, Erqou S, Fonarow GC, Echouffo-Tcheugui JB. Cardiac autonomic neuropathy and risk of incident heart failure among adults with type 2 diabetes. Eur J Heart Fail. 2022;24(4):634–41.

    PubMed 

    Google Scholar 

  • Woods JA, Katzenellenbogen JM, Davidson PM, Thompson SC. Heart failure among Indigenous Australians: a systematic review. BMC Cardiovasc Disord. 2012;12:99.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou L, Deng W, Zhou L, Fang P, He D, Zhang W, Liu K, Hu R. Prevalence, incidence and risk factors of chronic heart failure in the type 2 diabetic population: systematic review. Curr Diabetes Rev. 2009;5(3):171–84.

    CAS 
    PubMed 

    Google Scholar 

  • Davis TM, McAullay D, Davis WA, Bruce DG. Characteristics and outcome of type 2 diabetes in urban Aboriginal people: the Fremantle Diabetes Study. Intern Med J. 2007;37(1):59–63.

    CAS 
    PubMed 

    Google Scholar 

  • Raghavan S, Vassy JL, Ho YL, Song RJ, Gagnon DR, Cho K, Wilson PWF, Phillips LS. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8(4): e011295.

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Dooren FE, Nefs G, Schram MT, Verhey FR, Denollet J, Pouwer F. Depression and risk of mortality in people with diabetes mellitus: a systematic review and meta-analysis. PLoS ONE. 2013;8(3): e57058.

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chyun DA, Wackers FJ, Inzucchi SE, Jose P, Weiss C, Davey JA, Heller GV, Iskandrian AE, Young LH, Investigators D. Autonomic dysfunction independently predicts poor cardiovascular outcomes in asymptomatic individuals with type 2 diabetes in the DIAD study. SAGE Open Med. 2015;3:2050312114568476.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinberg CR, Pfeifer MA. An improved method for measuring heart-rate variability: assessment of cardiac autonomic function. Biometrics. 1984;40(3):855–61.

    CAS 
    PubMed 

    Google Scholar 

  • Jarczok MN, Weimer K, Braun C, Williams DP, Thayer JF, Gundel HO, Balint EM. Heart rate variability in the prediction of mortality: a systematic review and meta-analysis of healthy and patient populations. Neurosci Biobehav Rev. 2022;143: 104907.

    PubMed 

    Google Scholar 

  • Thayer JF, Ahs F, Fredrikson M, Sollers JJ 3rd, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36(2):747–56.

    PubMed 

    Google Scholar 

  • Hamasaki H. The effect of exercise on cardiovascular autonomic nervous function in patients with diabetes: a systematic review. Healthcare (Basel). 2023;11(19):2668.

    PubMed 

    Google Scholar 

  • Soedamah-Muthu S, Chaturvedi N, Witte D, Stevens L, Porta M, Fuller J. Relationship between risk factors and mortality in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study (PCS). Diabetes Care. 2008;31(7):1360–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Low PA, Denq JC, Opfer-Gehrking TL, Dyck PJ, O’Brien PC, Slezak JM. Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle Nerve. 1997;20(12):1561–8.

    CAS 
    PubMed 

    Google Scholar 

  • Gauci R, Hunter M, Bruce DG, Davis WA, Davis TME. Anemia complicating type 2 diabetes: prevalence, risk factors and prognosis. J Diabetes Complications. 2017;31(7):1169–74.

    PubMed 

    Google Scholar 

  • Liu W, Wang L, Huang X, He W, Song Z, Yang J. Impaired orthostatic blood pressure stabilization and reduced hemoglobin in chronic kidney disease. J Clin Hypertens (Greenwich). 2019;21(9):1317–24.

    CAS 
    PubMed 

    Google Scholar 

  • [ad_2]

    Source link