[ad_1]

  • Lenfant C. Chest pain of cardiac and noncardiac origin. Metabolism. 2010;59(Suppl 1):S41–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Langlo NM, Orvik AB, Dale J, Uleberg O, Bjørnsen LP. The acute sick and injured patients: an overview of the emergency department patient population at a Norwegian University Hospital Emergency Department. Eur J Emerg Med. 2014;21(3):175–80.

    Article 
    PubMed 

    Google Scholar 

  • Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, AHA/ACC/ASE/CHEST et al. /SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;144(22):e368-e454.

  • Chen W, Wang JP, Wang ZM, Hu PC, Chen Y. Association between sleep duration and chest pain in US adults: a cross-sectional study. Front Public Health. 2022;10:952075.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Egeland GM, Akerkar R, Kvåle R, Sulo G, Tell GS, Bakken IJ, Ebbing M. Hospitalised patients with unexplained chest pain: incidence and prognosis. J Intern Med. 2019;286(5):562–72.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruigómez A, Rodríguez LA, Wallander MA, Johansson S, Jones R. Chest pain in general practice: incidence, comorbidity and mortality. Fam Pract. 2006;23(2):167–74.

    Article 
    PubMed 

    Google Scholar 

  • Cayley WE. Jr. Diagnosing the cause of chest pain. Am Fam Physician. 2005;72(10):2012–21.

    PubMed 

    Google Scholar 

  • Cutugno C. Assessing chest Pain. Am J Nurs. 2022;122(5):56–8.

    Article 
    PubMed 

    Google Scholar 

  • Jindal A, Singhi S. Acute chest pain. Indian J Pediatr. 2011;78(10):1262–7.

    Article 
    PubMed 

    Google Scholar 

  • Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 update: a Report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article 
    PubMed 

    Google Scholar 

  • Bösner S, Becker A, Haasenritter J, Abu Hani M, Keller H, Sönnichsen AC, et al. Chest pain in primary care: epidemiology and pre-work-up probabilities. Eur J Gen Pract. 2009;15(3):141–6.

    Article 
    PubMed 

    Google Scholar 

  • Hsia RY, Hale Z, Tabas JA. A National Study of the prevalence of life-threatening diagnoses in patients with chest Pain. JAMA Intern Med. 2016;176(7):1029–32.

    Article 
    PubMed 

    Google Scholar 

  • Gastaldelli A. Measuring and estimating insulin resistance in clinical and research settings. Obes (Silver Spring). 2022;30(8):1549–63.

    Article 

    Google Scholar 

  • Jian S, Su-Mei N, Xue C, Jie Z, Xue-Sen W. Association and interaction between triglyceride-glucose index and obesity on risk of hypertension in middle-aged and elderly adults. Clin Exp Hypertens. 2017;39(8):732–9.

    Article 
    PubMed 

    Google Scholar 

  • Irace C, Carallo C, Scavelli FB, De Franceschi MS, Esposito T, Tripolino C, Gnasso A. Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract. 2013;67(7):665–72.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu L, Bao H, Huang X, Zhou W, Wang T, Zhu L, et al. Relationship between the triglyceride glucose index and the risk of First Stroke in Elderly Hypertensive patients. Int J Gen Med. 2022;15:1271–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez-Íñigo L, Navarro-González D, Fernández-Montero A, Pastrana-Delgado J, Martínez JA. The TyG index may predict the development of cardiovascular events. Eur J Clin Invest. 2016;46(2):189–97.

    Article 
    PubMed 

    Google Scholar 

  • Lee EY, Yang HK, Lee J, Kang B, Yang Y, Lee SH, et al. Triglyceride glucose index, a marker of insulin resistance, is associated with coronary artery stenosis in asymptomatic subjects with type 2 diabetes. Lipids Health Dis. 2016;15(1):155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu S, Xu L, Wu M, Chen S, Wang Y, Tian Y. Association between triglyceride-glucose index and risk of arterial stiffness: a cohort study. Cardiovasc Diabetol. 2021;20(1):146.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barzegar N, Tohidi M, Hasheminia M, Azizi F, Hadaegh F. The impact of triglyceride-glucose index on incident cardiovascular events during 16 years of follow-up: Tehran lipid and glucose study. Cardiovasc Diabetol. 2020;19(1):155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu X, Tan Z, Huang Y, Zhao H, Liu M, Yu P, et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21(1):124.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo E, Wang D, Yan G, Qiao Y, Liu B, Hou J, Tang C. High triglyceride-glucose index is associated with poor prognosis in patients with acute ST-elevation myocardial infarction after percutaneous coronary intervention. Cardiovasc Diabetol. 2019;18(1):150.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian X, Chen S, Zhang Y, Zhang X, Xu Q, Wang P, et al. Time course of the triglyceride glucose index accumulation with the risk of cardiovascular disease and all-cause mortality. Cardiovasc Diabetol. 2022;21(1):183.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li H, Jiang Y, Su X, Meng Z. The triglyceride glucose index was U-shape associated with all-cause mortality in population with cardiovascular diseases. Diabetol Metab Syndr. 2023;15(1):181.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu XC, He GD, Lo K, Huang YQ, Feng YQ. The triglyceride-glucose index, an insulin resistance marker, was non-linear Associated with all-cause and Cardiovascular Mortality in the General Population. Front Cardiovasc Med. 2020;7:628109.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen J, Pan Q, Du LL, Song JJ, Liu YP, Meng XB, et al. Association of triglyceride-glucose index with atherosclerotic cardiovascular disease and mortality among familial hypercholesterolemia patients. Diabetol Metab Syndr. 2023;15(1):39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Silva A, Caldas APS, Hermsdorff HHM, Bersch-Ferreira ÂC, Torreglosa CR, Weber B, Bressan J. Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc Diabetol. 2019;18(1):89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korhonen PE, Mikkola T, Kautiainen H, Eriksson JG. Both lean and fat body mass associate with blood pressure. Eur J Intern Med. 2021;91:40–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao H, Liu Y, Tsai TC, Schwartz J, Ji JS. Association between blood lead level and uncontrolled hypertension in the US Population (NHANES 1999–2016). J Am Heart Assoc. 2020;9(13):e015533.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chamberlain JJ, Johnson EL, Leal S, Rhinehart AS, Shubrook JH, Peterson L. Cardiovascular Disease and Risk Management: review of the American Diabetes Association Standards of Medical Care in Diabetes 2018. Ann Intern Med. 2018;168(9):640–50.

    Article 
    PubMed 

    Google Scholar 

  • Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab. 2020;42:101092.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol Med. 2019;25(8):723–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caleyachetty R, Thomas GN, Toulis KA, Mohammed N, Gokhale KM, Balachandran K, Nirantharakumar K. Metabolically healthy obese and Incident Cardiovascular Disease events among 3.5 million men and women. J Am Coll Cardiol. 2017;70(12):1429–37.

    Article 
    PubMed 

    Google Scholar 

  • Yan Y, Wang D, Sun Y, Ma Q, Wang K, Liao Y, et al. Triglyceride-glucose index trajectory and arterial stiffness: results from Hanzhong adolescent hypertension cohort study. Cardiovasc Diabetol. 2022;21(1):33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang Z, Ding X, Yue Q, Wang X, Chen Z, Cai Z, et al. Triglyceride-glucose index trajectory and stroke incidence in patients with hypertension: a prospective cohort study. Cardiovasc Diabetol. 2022;21(1):141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu L, Wu M, Chen S, Yang Y, Wang Y, Wu S, Tian Y. Triglyceride-glucose index associates with incident heart failure: a cohort study. Diabetes Metab. 2022;48(6):101365.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li X, Chan JSK, Guan B, Peng S, Wu X, Lu X, et al. Triglyceride-glucose index and the risk of heart failure: evidence from two large cohorts and a mendelian randomization analysis. Cardiovasc Diabetol. 2022;21(1):229.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang J, Huang X, Fu C, Sheng Q, Liu P. Association between triglyceride glucose index, coronary artery calcification and multivessel coronary disease in Chinese patients with acute coronary syndrome. Cardiovasc Diabetol. 2022;21(1):187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao J, Fan H, Wang T, Yu B, Mao S, Wang X, et al. TyG index is positively associated with risk of CHD and coronary atherosclerosis severity among NAFLD patients. Cardiovasc Diabetol. 2022;21(1):123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun M, Guo H, Wang Y, Ma D. Association of triglyceride glucose index with all-cause and cause-specific mortality among middle age and elderly US population. BMC Geriatr. 2022;22(1):461.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du L, Xu X, Wu Y, Yao H. Association between the triglyceride glucose index and cardiovascular mortality in obese population. Nutr Metab Cardiovasc Dis. 2023.

  • Pang J, Qian L, Che X, Lv P, Xu Q. TyG index is a predictor of all-cause mortality during the long-term follow-up in middle-aged and elderly with hypertension. Clin Exp Hypertens. 2023;45(1):2272581.

    Article 
    PubMed 

    Google Scholar 

  • Zhang R, Shi S, Chen W, Wang Y, Lin X, Zhao Y, et al. Independent effects of the triglyceride-glucose index on all-cause mortality in critically ill patients with coronary heart disease: analysis of the MIMIC-III database. Cardiovasc Diabetol. 2023;22(1):10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai W, Xu J, Wu X, Chen Z, Zeng L, Song X, et al. Association between triglyceride-glucose index and all-cause mortality in critically ill patients with ischemic stroke: analysis of the MIMIC-IV database. Cardiovasc Diabetol. 2023;22(1):138.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou Y, Wang C, Che H, Cheng L, Zhu D, Rao C, et al. Association between the triglyceride-glucose index and the risk of mortality among patients with chronic heart failure: results from a retrospective cohort study in China. Cardiovasc Diabetol. 2023;22(1):171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Ding X, Hua B, Liu Q, Gao H, Chen H, et al. Predictive effect of triglyceride–glucose index on clinical events in patients with type 2 diabetes mellitus and acute myocardial infarction: results from an observational cohort study in China. Cardiovasc Diabetol. 2021;20(1):43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Şaylık F, Çınar T, Selçuk M, Tanboğa İH. The predictive value of triglyceride-glucose index for in-hospital and one-year mortality in elderly non-diabetic patients with ST-segment elevation myocardial infarction. J Geriatr Cardiol. 2022;19(8):610–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cersosimo E, DeFronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22(6):423–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134–46.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62.

    Article 
    PubMed 

    Google Scholar 

  • Grover A, Padginton C, Wilson MF, Sung BH, Izzo JL Jr. Dandona P. Insulin attenuates norepinephrine-induced venoconstriction. An ultrasonographic study. Hypertension. 1995;25(4 Pt 2):779–84.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94(3):1172–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101(6):676–81.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Westergren HU, Svedlund S, Momo RA, Blomster JI, Wåhlander K, Rehnström E, et al. Insulin resistance, endothelial function, angiogenic factors and clinical outcome in non-diabetic patients with chest pain without myocardial perfusion defects. Cardiovasc Diabetol. 2016;15:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP, Wasserman DH. Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance. Diabetes. 2013;62(2):572–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Festa A, Hanley AJ, Tracy RP, D’Agostino R Jr., Haffner SM. Inflammation in the prediabetic state is related to increased insulin resistance rather than decreased insulin secretion. Circulation. 2003;108(15):1822–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vaccarino V, Khan D, Votaw J, Faber T, Veledar E, Jones DP, et al. Inflammation is related to coronary flow reserve detected by positron emission tomography in asymptomatic male twins. J Am Coll Cardiol. 2011;57(11):1271–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R1013–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • [ad_2]

    Source link