[ad_1]
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982â3021.
Google ScholarÂ
Baman JR, Passman RS. Atrial fibrillation. J Am Med Assoc. 2021;325:2218.
Google ScholarÂ
Zhang J, Chen G, Wang C, Wang X, Qian ZM, Cai M, et al. Associations of risk factor burden and genetic predisposition with the 10-year risk of atrial fibrillation: observations from a large prospective study of 348,904 participants. BMC Med. 2023;21:88.
Google ScholarÂ
Brorsson B, Bernstein SJ, Brook RH, Werkö L. Quality of life of patients with chronic stable angina before and four years after coronary revascularisation compared with a normal population. Heart. 2002;87:140â5.
Google ScholarÂ
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139âe596.
Google ScholarÂ
Welsh JA, Sharma AJ, Grellinger L, Vos MB. Consumption of added sugars is decreasing in the United States. Am J Clin Nutr. 2011;94:726â34.
Google ScholarÂ
Marriott BP, Hunt KJ, Malek AM, Newman JC. Trends in intake of energy and total sugar from sugar-sweetened beverages in the United States among children and adults, NHANES 2003-2016. Nutrients. 2019;11:https://doi.org/10.3390/nu11092004.
McGuire S. Scientific report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: US Departments of Agriculture and Health and Human Services, 2015. Adv Nutr. 2016;7:202â4.
Google ScholarÂ
Pacheco LS, Lacey JV Jr., Martinez ME, Lemus H, Araneta MRG, Sears DD, et al. Sugar-sweetened beverage intake and cardiovascular disease risk in the California Teachers Study. J Am Heart Assoc. 2020;9:e014883.
Google ScholarÂ
Ambrosini GL, Oddy WH, Huang RC, Mori TA, Beilin LJ, Jebb SA. Prospective associations between sugar-sweetened beverage intakes and cardiometabolic risk factors in adolescents. Am J Clin Nutr. 2013;98:327â34.
Google ScholarÂ
Wang D, Karvonen-Gutierrez CA, Jackson EA, Elliott MR, Appelhans BM, Barinas-Mitchell E, et al. Prospective associations between beverage intake during the midlife and subclinical carotid atherosclerosis: the Study of Womenâs Health Across the Nation. PLoS One. 2019;14:e0219301.
Google ScholarÂ
Blumberg JB, Vita JA, Chen CY. Concord grape juice polyphenols and cardiovascular risk factors: dose-response relationships. Nutrients. 2015;7:10032â52.
Google ScholarÂ
Scheffers FR, Boer JMA, Gehring U, Koppelman GH, Vonk J, Smit HA, et al. The association of pure fruit juice, sugar-sweetened beverages and fruit consumption with asthma prevalence in adolescents growing up from 11 to 20 years: the PIAMA birth cohort study. Prev Med Rep. 2022;28:101877.
Google ScholarÂ
Herforth A, Arimond M, Ãlvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A global review of food-based dietary guidelines. Adv Nutr. 2019;10:590â605.
Google ScholarÂ
OâNeil CE, Nicklas TA, Rampersaud GC, Fulgoni VL 3rd. 100% orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults: National Health and Nutrition Examination Survey, 2003-2006. Nutr J. 2012;11:107.
Google ScholarÂ
Fidler Mis N, Braegger C, Bronsky J, Campoy C, Domellöf M, Embleton ND, et al. Sugar in infants, children and adolescents: a position paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;65:681â96.
Google ScholarÂ
Scheffers FR, Boer JMA, Verschuren WMM, Verheus M, van der Schouw YT, Sluijs I, et al. Pure fruit juice and fruit consumption and the risk of CVD: the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. Br J Nutr. 2019;121:351â9.
Google ScholarÂ
Zhang Z, Zeng X, Li M, Zhang T, Li H, Yang H, et al. A prospective study of fruit juice consumption and the risk of overall and cardiovascular disease mortality. Nutrients. 2022;14:https://doi.org/10.3390/nu14102127.
Pan B, Ge L, Lai H, Wang Q, Wang Q, Zhang Q, et al. Association of soft drink and 100% fruit juice consumption with all-cause mortality, cardiovascular diseases mortality, and cancer mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2022;62:8908â19.
Google ScholarÂ
Yarmolinsky J, Wade KH, Richmond RC, Langdon RJ, Bull CJ, Tilling KM, et al. Causal Inference in cancer epidemiology: what Is the role of Mendelian randomization? Cancer Epidemiol Biomark Prev. 2018;27:995â1010.
Google ScholarÂ
Sleiman PM, Grant SF. Mendelian randomization in the era of genomewide association studies. Clin Chem. 2010;56:723â8.
Google ScholarÂ
Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133â63.
Google ScholarÂ
Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. Br Med J. 2021;375:n2233.
Google ScholarÂ
Cai D, Chen J, Wu Y, Jiang C. No causal association between tea consumption and 7 cardiovascular disorders: a two-sample Mendelian randomization study. Front Genet. 2022;13:989772.
Google ScholarÂ
Nordestgaard AT, Nordestgaard BG. Coffee intake, cardiovascular disease and all-cause mortality: observational and Mendelian randomization analyses in 95â000-223â000 individuals. Int J Epidemiol. 2016;45:1938â52.
Google ScholarÂ
Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. J Am Med Assoc. 2021;326:1614â21.
Google ScholarÂ
Zhong VW, Kuang A, Danning RD, Kraft P, van Dam RM, Chasman DI, et al. A genome-wide association study of bitter and sweet beverage consumption. Hum Mol Genet. 2019;28:2449â57.
Google ScholarÂ
Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177â84.
Google ScholarÂ
Zhu Y, Wang Y, Liu X, Wang Y, Cui Z, Liu F, et al. Genetically predicted osteoprotegerin levels and the risk of cardiovascular diseases: a Mendelian randomization study. Int J Cardiol. 2023;390:131233.
Google ScholarÂ
Wang S, Zhu H, Pan L, Zhang M, Wan X, Xu H, et al. Systemic inflammatory regulators and risk of acute-on-chronic liver failure: a bidirectional Mendelian-randomization study. Front Cell Dev Biol. 2023;11:1125233.
Google ScholarÂ
Yin Z, Chen J, Xia M, Zhang X, Li Y, Chen Z, et al. Assessing causal relationship between circulating cytokines and age-related neurodegenerative diseases: a bidirectional two-sample Mendelian randomization analysis. Sci Rep. 2023;13:12325.
Google ScholarÂ
Bulló M, Papandreou C, GarcÃa-Gavilán J, Ruiz-Canela M, Li J, Guasch-Ferré M, et al. Tricarboxylic acid cycle related-metabolites and risk of atrial fibrillation and heart failure. Metabolism. 2021;125:154915.
Google ScholarÂ
Rejman K, Górska-Warsewicz H, Czeczotko M, Laskowski W. Nonalcoholic beverages as sources of nutrients in the average polish diet. Nutrients. 2020;12:https://doi.org/10.3390/nu12051262.
de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation. 2012;125:1735â1741, s1731.
Google ScholarÂ
Li X, Peng S, Wu X, Guan B, Tse G, Chen S, et al. C-reactive protein and atrial fibrillation: Insights from epidemiological and Mendelian randomization studies. Nutr Metab Cardiovasc Dis. 2022;32:1519â27.
Google ScholarÂ
Pol T, Hijazi Z, Lindbäck J, Oldgren J, Alexander JH, Connolly SJ, et al. Using multimarker screening to identify biomarkers associated with cardiovascular death in patients with atrial fibrillation. Cardiovasc Res. 2022;118:2112â23.
Google ScholarÂ
Vinson JA, Liang X, Proch J, Hontz BA, Dancel J, Sandone N. Polyphenol antioxidants in citrus juices: in vitro and in vivo studies relevant to heart disease. Adv Exp Med Biol. 2002;505:113â22.
Google ScholarÂ
Hyson DA. A review and critical analysis of the scientific literature related to 100% fruit juice and human health. Adv Nutr. 2015;6:37â51.
Google ScholarÂ
Kiss AK, Piwowarski JP. Ellagitannins, gallotannins and their metabolitesâthe contribution to the anti-inflammatory effect of food products and medicinal plants. Curr Med Chem. 2018;25:4946â67.
Google ScholarÂ
Ali M, Girgis S, Hassan A, Rudick S, Becker RC. Inflammation and coronary artery disease: from pathophysiology to Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Coron Artery Dis. 2018;29:429â37.
Google ScholarÂ
Vita JA. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr. 2005;81:292sâ297s.
Google ScholarÂ
Rossi I, Mignogna C, Del Rio D, Mena P. Health effects of 100% fruit and vegetable juices: evidence from human intervention studies. Nutr Res Rev. 2023;1â113. https://doi.org/10.1017/s095442242300015x.
Ford ES, Giles WH. Serum vitamins, carotenoids, and angina pectoris: findings from the National Health and Nutrition Examination Survey III. Ann Epidemiol 2000;10:106â16.
Google ScholarÂ
[ad_2]
Source link