[ad_1]

  • The Global Health Observatory. Global health estimates 2020: deaths by cause, age, sex, by country and by region. 2000-2019 (WHO, 2020).

  • Bray, F. et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127, 3029–3030 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Meijers, R. A. & de Boer, R. A. Common risk factors for heart failure and cancer. Cardiovasc. Res. 115, 844–853 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Boer, R. A. et al. Cancer and heart disease: associations and relations. Eur. J. Heart Fail. 21, 1515–1525 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Koene, R. J. et al. Shared risk factors in cardiovascular disease and cancer. Circulation 133, 1104–1114 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoltzfus, K. C. et al. Fatal heart disease among cancer patients. Nat. Commun. 11, 2020 (2011).

    Google Scholar 

  • Battisti, N. M. L. et al. Prevalence of cardiovascular disease in patients with potentially curable malignancies: a national registry dataset analysis. JACC CardioOncol. 4, 238–253 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Florido, R. et al. Cardiovascular disease risk among cancer survivors: the Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 80, 22–32 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paterson, D. I. et al. Incident cardiovascular disease among adults with cancer. JACC CardioOncol. 4, 85–94 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Ten-year cardiovascular risk among cancer survivors: the National Health and Nutrition Examination Survey. PLoS ONE 16, e0247919 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aboumsallem, J. P., Moslehi, J. & de Boer, R. A. Reverse cardio-oncology: cancer development in patients with cardiovascular disease. J. Am. Heart Assoc. 9, e013754 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, C. F. et al. Risk of cancer after diagnosis of cardiovascular disease. JACC CardioOncol. 5, 431–440 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chianca, M. et al. Bidirectional relationship between cancer and heart failure: insights on circulating biomarkers. Front. Cardiovasc. Med. 9, 936654 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayek, S. S. et al. Preparing the cardiovascular workforce to care for oncology patients: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 2226–2235 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrmann, J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 17, 474–502 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrmann, J. Vascular toxic effects of cancer therapies. Nat. Rev. Cardiol. 17, 503–522 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omland, T., Heck, S. L. & Gulati, G. The role of cardioprotection in cancer therapy cardiotoxicity. JACC CardioOncol. 4, 19–37 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, S. et al. Immune checkpoint inhibitor therapy in oncology. JACC CardioOncol. 4, 579–597 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quartermaine, C. et al. Cardiovascular toxicities of BTK inhibitors in chronic lymphocytic leukemia. JACC CardioOncol. 5, 570–590 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glen, C. et al. Mechanistic and clinical overview cardiovascular toxicity of BRAF and MEK inhibitors: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 4, 1–18 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parashar, S. et al. Cancer treatment-related cardiovascular toxicity in gynecologic malignancies. JACC CardioOncol. 5, 159–173 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welty, N. E. & Gill, S. I. Cancer immunotherapy beyond checkpoint blockade. JACC CardioOncol. 4, 563–578 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Georgiopoulos, G. et al. Cardiovascular toxicity of proteasome inhibitors: underlying mechanisms and management strategies: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 5, 1–21 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergom, C. et al. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncol. 3, 343–359 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Boer, R. A. et al. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 22, 2272–2289 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Karlstaedt, A., Moslehi, J. & de Boer, R. A. Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat. Rev. Cardiol. 19, 414–425 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leiva, O. et al. Common pathophysiology in cancer, atrial fibrillation, atherosclerosis, and thrombosis: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 3, 619–634 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuchs, F. D. & Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 75, 285–292 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cohen, J. B. et al. Hypertension in cancer patients and survivors. JACC CardioOncol. 1, 238–251 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Rahimi, K. et al. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 397, 1625–1636 (2021).

    Article 

    Google Scholar 

  • Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Seretis, A. et al. Association between blood pressure and risk of cancer development: a systematic review and meta-analysis of observational studies. Sci. Rep. 9, 8565 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harding, J. L. et al. Hypertension, antihypertensive treatment and cancer incidence and mortality: a pooled collaborative analysis of 12 Australian and New Zealand cohorts. J. Hypertens. 34, 149–155 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, H. et al. Hypertension and breast cancer risk: a systematic review and meta-analysis. Sci. Rep. 7, 44877 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, R. H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care 40, 195–211 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewington, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370, 1829–1839 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Navarese, E. P. et al. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. JAMA 319, 1566–1579 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, X. & Tian, Z. Dyslipidemia and colorectal cancer risk: a meta-analysis of prospective studies. Cancer Causes Control 26, 257–268 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, F. et al. Serum lipid profiles and cholesterol-lowering medication use in relation to subsequent risk of colorectal cancer in the UK Biobank cohort. Cancer Epidemiol. Biomark. Prev. 32, 524–530 (2023).

    Article 
    CAS 

    Google Scholar 

  • Fang, Z., He, M. & Song, M. Serum lipid profiles and risk of colorectal cancer: a prospective cohort study in the UK Biobank. Br. J. Cancer 124, 663–670 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, Y. et al. The association between serum lipids and colorectal neoplasm: a systemic review and meta-analysis. Public Health Nutr. 18, 3355–3370 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nouri, M. et al. Effect of serum lipid profile on the risk of breast cancer: systematic review and meta-analysis of 1,628,871 women. J. Clin. Med. 11, 4503 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni, H., Liu, H. & Gao, R. Serum lipids and breast cancer risk: a meta-analysis of prospective cohort studies. PLoS ONE 10, e0142669 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowak, C. & Ärnlöv, J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat. Commun. 9, 3957 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ganjali, S. et al. HDL and cancer – causality still needs to be confirmed? Update 2020. Semin. Cancer Biol. 73, 169–177 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pirro, M. et al. High density lipoprotein cholesterol and cancer: marker or causative? Prog. Lipid Res. 71, 54–69 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csige, I. et al. The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018, 3407306 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. S. et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 42, 3388–3403 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kyrgiou, M. et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ 356, j477 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet 384, 755–765 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrelli, F. et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw. Open 4, e213520 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leon, B. M. & Maddox, T. M. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6, 1246–1258 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Einarson, T. R. et al. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 17, 83 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raghavan, S. et al. Diabetes mellitus-related all‐cause and cardiovascular mortality in a national cohort of adults. J. Am. Heart Assoc. 8, e011295 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, X. et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ 370, m2297 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsilidis, K. K. et al. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350, g7607 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Ling, S. et al. Association of type 2 diabetes with cancer: a meta-analysis with bias analysis for unmeasured confounding in 151 cohorts comprising 32 million people. Diabetes Care 43, 2313–2322 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Banks, E. et al. Tobacco smoking and risk of 36 cardiovascular disease subtypes: fatal and non-fatal outcomes in a large prospective Australian study. BMC Med. 17, 128 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, A. et al. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus. Circulation 132, 1795–1804 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hackshaw, A. et al. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ 360, j5855 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duncan, M. S. et al. Association of smoking cessation with subsequent risk of cardiovascular disease. JAMA 322, 642–650 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gandini, S. et al. Tobacco smoking and cancer: a meta-analysis. Int. J. Cancer 122, 155–164 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macacu, A. et al. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res. Treat. 154, 213–224 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Duan, W. et al. Smoking and survival of breast cancer patients: a meta-analysis of cohort studies. Breast 33, 117–124 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Botteri, E. et al. Smoking and colorectal cancer risk, overall and by molecular subtypes: a meta-analysis. Am. J. Gastroenterol. 115, 1940–1949 (2020).

    Article 
    PubMed 

    Google Scholar 

  • O’Keeffe, L. M. et al. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open 8, e021611 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larsson, S. C. & Burgess, S. Appraising the causal role of smoking in multiple diseases: a systematic review and meta-analysis of Mendelian randomization studies. EBioMedicine 82, 104154 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. Alcohol consumption and mortality from coronary heart disease: an updated meta-analysis of cohort studies. J. Stud. Alcohol Drugs 78, 375–386 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biddinger, K. J. et al. Association of habitual alcohol intake with risk of cardiovascular disease. JAMA Netw. Open 5, e223849 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larsson, S. C. et al. Alcohol consumption and cardiovascular disease. Circ. Genom. Precis. Med. 13, e002814 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoo, J. E. et al. Association between changes in alcohol consumption and cancer risk. JAMA Netw. Open 5, e2228544 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br. J. Cancer 112, 580–593 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rumgay, H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 22, 1071–1080 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagnardi, V. et al. Light alcohol drinking and cancer: a meta-analysis. Ann. Oncol. 24, 301–308 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, M. et al. Alcohol drinking and all cancer mortality: a meta-analysis. Ann. Oncol. 24, 807–816 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 124, 779–798 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karam, G. et al. Comparison of seven popular structured dietary programmes and risk of mortality and major cardiovascular events in patients at increased cardiovascular risk: systematic review and network meta-analysis. BMJ 380, e072003 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pant, A. et al. Primary prevention of cardiovascular disease in women with a Mediterranean diet: systematic review and meta-analysis. Heart 109, 1208–1215 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Rodríguez-Monforte, M., Flores-Mateo, G. & Sánchez, E. Dietary patterns and CVD: a systematic review and meta-analysis of observational studies. Br. J. Nutr. 114, 1341–1359 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Grosso, G. et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit. Rev. Food Sci. Nutr. 57, 3218–3232 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Miller, V. et al. Evaluation of the quality of evidence of the association of foods and nutrients with cardiovascular disease and diabetes: a systematic review. JAMA Netw. Open 5, e2146705 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bechthold, A. et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 59, 1071–1090 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gan, Z. H. et al. Association between plant-based dietary patterns and risk of cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. Nutrients 13, 3952 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quek, J. et al. The association of plant-based diet with cardiovascular disease and mortality: a meta-analysis and systematic review of prospect cohort studies. Front. Cardiovasc. Med. 8, 756810 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. et al. Plant‐based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all‐cause mortality in a general population of middle‐aged adults. J. Am. Heart Assoc. 8, e012865 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, A. S. et al. Association of healthful plant-based diet adherence with risk of mortality and major chronic diseases among adults in the UK. JAMA Netw. Open 6, e234714 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwingshackl, L. et al. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis. Nutrients 9, 1063 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morze, J. et al. An updated systematic review and meta-analysis on adherence to Mediterranean diet and risk of cancer. Eur. J. Nutr. 60, 1561–1586 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kodama, S. et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301, 2024–2035 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sattelmair, J. et al. Dose response between physical activity and risk of coronary heart disease. Circulation 124, 789–795 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. & Siegrist, J. Physical activity and risk of cardiovascular disease – a meta-analysis of prospective cohort studies. Int. J. Env. Res. Public Health 9, 391–407 (2012).

    Article 

    Google Scholar 

  • Wahid, A. et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta‐analysis. J. Am. Heart Assoc. 5, e002495 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blond, K. et al. Association of high amounts of physical activity with mortality risk: a systematic review and meta-analysis. Br. J. Sports Med. 54, 1195–1201 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bailey, D. P. et al. Sitting time and risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am. J. Prev. Med. 57, 408–416 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gonzalez-Jaramillo, N. et al. Systematic review of physical activity trajectories and mortality in patients with coronary artery disease. J. Am. Coll. Cardiol. 79, 1690–1700 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816–825 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McTiernan, A. et al. Physical activity in cancer prevention and survival: a systematic review. Med. Sci. Sports Exerc. 51, 1252–1261 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedenreich, C. M. et al. Physical activity and mortality in cancer survivors: a systematic review and meta-analysis. JNCI Cancer Spectr. 4, pkz080 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandt, E. J. et al. Assessing and addressing social determinants of cardiovascular health: JACC state-of-the-art review. J. Am. Coll. Cardiol. 81, 1368–1385 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Powell-Wiley, T. M. et al. Social determinants of cardiovascular disease. Circ. Res. 130, 782–799 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e596–e646 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, S. S. et al. Development and validation of the American Heart Association’s PREVENT equations. Circulation 149, 430–449 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Howard, V. J. et al. The Reasons for Geographic and Racial Differences in Stroke study: objectives and design. Neuroepidemiology 25, 135–143 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Sterling, M. R. et al. Social determinants of health and 90‐day mortality after hospitalization for heart failure in the REGARDS study. J. Am. Heart Assoc. 9, e014836 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safford, M. M. et al. Number of social determinants of health and fatal and nonfatal incident coronary heart disease in the REGARDS study. Circulation 143, 244–253 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Reshetnyak, E. et al. Impact of multiple social determinants of health on incident stroke. Stroke 51, 2445–2453 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinheiro, L. C. et al. Social determinants of health and cancer mortality in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort study. Cancer 128, 122–130 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ganatra, S. et al. Impact of social vulnerability on comorbid cancer and cardiovascular disease mortality in the United States. JACC CardioOncol. 4, 326–337 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tufano, A., Coppola, A. & Galderisi, M. The growing impact of cardiovascular oncology: epidemiology and pathophysiology. Semin. Thromb. Hemost. 47, 899–906 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lenihan, D. J. & Cardinale, D. M. Late cardiac effects of cancer treatment. J. Clin. Oncol. 30, 3657–3664 (2012).

    Article 
    PubMed 

    Google Scholar 

  • van Dorst, D. C. H. et al. Hypertension and prohypertensive antineoplastic therapies in cancer patients. Circ. Res. 128, 1040–1061 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sturgeon, K. M. et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 40, 3889–3897 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. et al. The role of genetic predisposition in cardiovascular risk after cancer diagnosis: a matched cohort study of the UK Biobank. Br. J. Cancer 127, 1650–1659 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaorsky, N. G. et al. Causes of death among cancer patients. Ann. Oncol. 28, 400–407 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zullig, L. L. et al. Cardiometabolic comorbidities in cancer survivors. JACC CardioOncol. 4, 149–165 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sloten, T. V. et al. Association of midlife cardiovascular health and subsequent change in cardiovascular health with incident cancer. JACC CardioOncol. 5, 39–52 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yun, J. P. et al. Risk of atrial fibrillation according to cancer type. JACC CardioOncol. 3, 221–232 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raisi-Estabragh, Z. et al. Incident cardiovascular events and imaging phenotypes in UK Biobank participants with past cancer. Heart 109, 1007–1015 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Meacham, L. R. et al. Cardiovascular risk factors in adult survivors of pediatric cancer – a report from the Childhood Cancer Survivor study. Cancer Epidemiol. Biomark. Prev. 19, 170–181 (2010).

    Article 

    Google Scholar 

  • Hasin, T. et al. Patients with heart failure have an increased risk of incident cancer. J. Am. Coll. Cardiol. 62, 881–886 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasin, T. et al. Heart failure after myocardial infarction is associated with increased risk of cancer. J. Am. Coll. Cardiol. 68, 265–271 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banke, A. et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur. J. Heart Fail. 18, 260–266 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Suzuki, M. et al. Incidence of cancers in patients with atherosclerotic cardiovascular diseases. Int. J. Cardiol. Heart Vasc. 17, 11–16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lau, E. S. et al. Cardiovascular risk factors are associated with future cancer. JACC CardioOncol. 3, 48–58 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meijers, W. C. et al. Heart failure stimulates tumor growth by circulating factors. Circulation 138, 678–691 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carpeggiani, C. et al. Stress echocardiography positivity predicts cancer death. J. Am. Heart Assoc. 6, e007104 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selvaraj, S. et al. Lack of association between heart failure and incident cancer. J. Am. Coll. Cardiol. 71, 1501–1510 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lam, P. H. et al. Temporal associations and outcomes of breast cancer and heart failure in postmenopausal women. JACC CardioOncol. 2, 567–577 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leedy, D. J. et al. The association between heart failure and incident cancer in women: an analysis of the Women’s Health Initiative. Eur. J. Heart Fail. 23, 1712–1721 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Libby, P. & Kobold, S. Inflammation: a common contributor to cancer, aging, and cardiovascular diseases-expanding the concept of cardio-oncology. Cardiovasc. Res. 115, 824–829 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehdizadeh, M. et al. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat. Rev. Cardiol. 19, 250–264 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer – role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7, 131 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis – from experimental insights to the clinic. Nat. Rev. Drug Discov. 20, 589–610 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Engelen, S. E. et al. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 17, 873–882 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6, 263 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, Inflammation, and cancer. Cell 140, 883–899 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Münzel, T. et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J. Am. Coll. Cardiol. 70, 212–229 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peoples, J. N. et al. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 51, 1–13 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sack, M. N. et al. Basic biology of oxidative stress and the cardiovascular system. J. Am. Coll. Cardiol. 70, 196–211 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perillo, B. et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192–203 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaiswal, S. Clonal hematopoiesis and nonhematologic disorders. Blood 136, 1606–1614 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yura, Y., Cochran, J. D. & Walsh, K. Therapy-related clonal hematopoiesis: a new link between cancer and cardiovascular disease. Heart Fail. Clin. 18, 349–359 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marnell, C. S., Bick, A. & Natarajan, P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell. Cardiol. 161, 98–105 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvillo-Arguelles, O. et al. Connections between clonal hematopoiesis, cardiovascular disease, and cancer: a review. JAMA Cardiol. 4, 380–387 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Fuster, J. J. Clonal hematopoiesis and cardiovascular disease in cancer patients and survivors. Thromb. Res. 213, S107–S112 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvillo-Argüelles, O. et al. Cardiovascular disease among patients with AML and CHIP-related mutations. JACC CardioOncol. 4, 38–49 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trøseid, M. et al. The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine 52, 102649 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masenga, S. K. et al. Recent advances in modulation of cardiovascular diseases by the gut microbiota. J. Hum. Hypertens. 36, 952–959 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Witkowski, M., Weeks, T. L. & Hazen, S. L. Gut microbiota and cardiovascular disease. Circ. Res. 127, 553–570 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakaroun, R. M., Olsson, L. M. & Bäckhed, F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat. Rev. Cardiol. 20, 217–235 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tang, W. H. W., Kitai, T. & Hazen, S. L. Gut microbiota in cardiovascular health and disease. Circ. Res. 120, 1183–1196 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahman, M. M. et al. Microbiome in cancer: role in carcinogenesis and impact in therapeutic strategies. Biomed. Pharmacother. 149, 112898 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, C. C. & Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 20, 429–452 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ağagündüz, D. et al. Understanding the role of the gut microbiome in gastrointestinal cancer: a review. Front. Pharmacol. 14, 1130562 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, L.-Y. et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 8, 201 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Avraham, S. et al. Early cardiac remodeling promotes tumor growth and metastasis. Circulation 142, 670–683 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tani, T. et al. Heart failure post myocardial infarction promotes mammary tumor growth through the NGF-TRKA pathway. JACC CardioOncol. 6, 55–66 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Porporato, P. E. et al. Mitochondrial metabolism and cancer. Cell Res. 28, 265–280 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karlstaedt, A. et al. Cardio-oncology. JACC Basic Transl. Sci. 6, 705–718 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, W. et al. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilcox, N. S. et al. Sex-specific cardiovascular risks of cancer and its therapies. Circ. Res. 130, 632–651 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okwuosa, T. M. et al. Impact of hormonal therapies for treatment of hormone-dependent cancers (breast and prostate) on the cardiovascular system: effects and modifications: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 14, e000082 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noyd, D. H. et al. Cardiovascular risk factor disparities in adult survivors of childhood cancer compared with the general population. JACC CardioOncol. 5, 489–500 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • American Cancer Society. Cancer treatment & survivorship facts & figures 2022-2024 (American Cancer Society, 2022).

  • Handy, C. E. et al. Synergistic opportunities in the interplay between cancer screening and cardiovascular disease risk assessment: together we are stronger. Circulation 138, 727–734 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Fradley, M. G. et al. Developing a clinical cardio-oncology program and the building blocks for success. JACC CardioOncol. 5, 707–710 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, E. E. et al. Association of cardiometabolic disease with cancer in the community. JACC CardioOncol. 4, 69–81 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salloum, F. N. et al. Priorities in cardio-oncology basic and translational science. JACC CardioOncol. 5, 715–731 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • [ad_2]

    Source link