[ad_1]
Libby, P. The changing landscape of atherosclerosis. Nature 592, 524â533 (2021).
Google ScholarÂ
Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838â1847 (2020).
Google ScholarÂ
Antonopoulos, A. S. et al. Biomarkers of vascular inflammation for cardiovascular risk prognostication. JACC Cardiovasc. Imaging 15, 460â471 (2022).
Google ScholarÂ
Mézquita, A. J. V. et al. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat. Rev. Cardiol. 20, 696â714 (2023).
Google ScholarÂ
Fernández-Friera, L. et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J. Am. Coll. Cardiol. 73, 1371â1382 (2019).
Google ScholarÂ
Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging 8, 493â494 (2015).
Google ScholarÂ
Ripa, R. S. et al. Effect of liraglutide on arterial inflammation assessed as [18F]FDG uptake in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Circ. Cardiovasc. Imaging 14, e012174 (2021).
Google ScholarÂ
Devesa, A. et al. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur. Heart J. 43, 1809â1828 (2022).
Google ScholarÂ
Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834â845 (2017).
Google ScholarÂ
Moss, A. et al. Coronary atherosclerotic plaque activity and future coronary events. JAMA Cardiol. 8, 755â764 (2023).
Google ScholarÂ
Kwiecinski, J. et al. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J. Am. Coll. Cardiol. 75, 3061â3074 (2020).
Google ScholarÂ
Fletcher, A. J. et al. Thoracic aortic 18F-sodium fluoride activity and ischemic stroke in patients with established cardiovascular disease. JACC Cardiovasc. Imaging 15, 1274â1288 (2022).
Google ScholarÂ
Eberhardt, N. & Giannarelli, C. How single-cell technologies have provided new insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 243â252 (2022).
Google ScholarÂ
Tawakol, A. et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818â1824 (2006).
Google ScholarÂ
Cheng, V. Y. et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J. Nucl. Med. 53, 575â583 (2012).
Google ScholarÂ
Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705â713 (2014).
Google ScholarÂ
Figueroa, A. L. et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc. Imaging 6, 1250â1259 (2013).
Google ScholarÂ
Moon, S. H. et al. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc. Imaging 8, 949â956 (2015).
Google ScholarÂ
Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121â130 (2015).
Google ScholarÂ
Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547â1559 (2011).
Google ScholarÂ
Sahota, A. et al. Atherosclerosis inflammation and burden in young adult smokers and vapers measured by PET/MR. Atherosclerosis 325, 110â116 (2021).
Google ScholarÂ
Kundel, V. et al. Sleep duration and vascular inflammation using hybrid positron emission tomography/magnetic resonance imaging: results from the Multi-Ethnic Study of Atherosclerosis (MESA). J. Clin. Sleep Med. 17, 2009â2018 (2021).
Google ScholarÂ
Maier, A. et al. Pulmonary artery 18F-fluorodeoxyglucose uptake by PET/CMR as a marker of pulmonary hypertension in sarcoidosis. JACC Cardiovasc. Imaging 15, 108â120 (2022).
Google ScholarÂ
Tarkin, J. M., Joshi, F. R. & Rudd, J. H. F. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443â457 (2014).
Google ScholarÂ
Robson, P. M. et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc. Imaging 10, 1103â1112 (2017).
Google ScholarÂ
Majeed, K. et al. Coronary 18F-sodium fluoride PET detects high-risk plaque features on optical coherence tomography and CT-angiography in patients with acute coronary syndrome. Atherosclerosis 319, 142â148 (2021).
Google ScholarÂ
Doris, M. K. et al. Coronary 18F-fluoride uptake and progression of coronary artery calcification. Circ. Cardiovasc. Imaging 13, e011438 (2020).
Google ScholarÂ
Daghem, M. et al. Temporal changes in coronary 18F-fluoride plaque uptake in patients with coronary atherosclerosis. J. Nucl. Med. 64, 1478â1486 (2023).
Google ScholarÂ
Chowdhury, M. M. et al. Vascular positron emission tomography and restenosis in symptomatic peripheral arterial disease: a prospective clin. study. JACC Cardiovasc. Imaging 13, 1008â1017 (2020).
Google ScholarÂ
Syed, M. B. J. et al. 18F-sodium fluoride positron emission tomography and computed tomography in acute aortic syndrome. JACC Cardiovasc. Imaging 15, 1291â1304 (2022).
Google ScholarÂ
Ndlovu, H. et al. [68Ga]Ga-NODAGAZOL uptake in atherosclerotic plaques correlates with the cardiovascular risk profile of patients. Ann. Nucl. Med. 36, 684â692 (2022).
Google ScholarÂ
Toner, Y. C. et al. Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Sci. Rep. 12, 6185 (2022).
Google ScholarÂ
Li, X. et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res. 2, 52 (2012).
Google ScholarÂ
Rominger, A. et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J. Nucl. Med. 51, 193â197 (2010).
Google ScholarÂ
Jensen, J. K., Madsen, J. S., Jensen, M. E. K., Kjaer, A. & Ripa, R. S. [64Cu]Cu-DOTATATE PET metrics in the investigation of atherosclerotic inflammation in humans. J. Nucl. Cardiol. 30, 986â1000 (2023).
Google ScholarÂ
Tarkin, J. M. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774â1791 (2017).
Google ScholarÂ
Jensen, J. K. et al. Effect of 26 weeks of liraglutide treatment on coronary artery inflammation in type 2 diabetes quantified by [64Cu]Cu-DOTATATE PET/CT: results from the LIRAFLAME trial. Front. Endocrinol. 12, 790405 (2021).
Google ScholarÂ
Oostveen, R. F. et al. Atorvastatin lowers 68Ga-DOTATATE uptake in coronary arteries, bone marrow and spleen in individuals with type 2 diabetes. Diabetologia 66, 2164â2169 (2023).
Google ScholarÂ
Äorovi, Ä. A. et al. Somatostatin receptor PET/MR imaging of inflammation in patients with large vessel vasculitis and atherosclerosis. J. Am. Coll. Cardiol. 81, 336â354 (2023).
Google ScholarÂ
Li, X. et al. [68Ga]Pentixafor-PET/MRI for the detection of chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging 45, 558â566 (2018).
Google ScholarÂ
Weiberg, D. et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J. Nucl. Med. 59, 266â272 (2018).
Google ScholarÂ
Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391â1402 (2003).
Google ScholarÂ
Bot, I. et al. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J. Mol. Cell. Cardiol. 74, 44â52 (2014).
Google ScholarÂ
Derlin, T. et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1934â1944 (2018).
Google ScholarÂ
Khare, H. A. et al. In vivo detection of urokinase-type plasminogen activator receptor (uPAR) expression in arterial atherogenesis using [64Cu]Cu-DOTA-AE105 positron emission tomography (PET). Atherosclerosis 352, 103â111 (2022).
Google ScholarÂ
Pugliese, F. et al. Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J. Am. Coll. Cardiol. 56, 653â661 (2010).
Google ScholarÂ
Lamare, F. et al. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT. J. Nucl. Med. 52, 33â39 (2011).
Google ScholarÂ
Gaemperli, O. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur. Heart J. 33, 1902â1910 (2012).
Google ScholarÂ
Dietz, M. et al. Imaging angiogenesis in atherosclerosis in large arteries with 68Ga-NODAGA-RGD PET/CT: relationship with clinical atherosclerotic cardiovascular disease. EJNMMI Res. 11, 71 (2021).
Google ScholarÂ
Jenkins, W. S. et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart 105, 1868â1875 (2019).
Google ScholarÂ
Joshi, F. R. et al. Vascular imaging with 18F-fluorodeoxyglucose positron emission tomography is influenced by hypoxia. J. Am. Coll. Cardiol. 69, 1873â1874 (2017).
Google ScholarÂ
van der Valk, F. M. et al. In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc. Imaging 8, 1340â1341 (2015).
Google ScholarÂ
Nie, X. et al. 64Cu-ATSM positron emission tomography/magnetic resonance imaging of hypoxia in human atherosclerosis. Circ. Cardiovasc. Imaging 13, e009791 (2020).
Google ScholarÂ
Kato, K. et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur. J. Nucl. Med. Mol. Imaging 36, 1622â1628 (2009).
Google ScholarÂ
Vöö, S. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 18F-fluorocholine positron emission tomography-computed tomography: prospective study on vulnerable atheroma with immunohistochemical validation. Circ. Cardiovasc. Imaging 9, e004467 (2016).
Google ScholarÂ
Ye, Y.-X. et al. Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ. Res. 117, 835â845 (2015).
Google ScholarÂ
Bing, R. et al. 18F-GP1 positron emission tomography and bioprosthetic aortic valve thrombus. JACC Cardiovasc. Imaging 15, 1107â1120 (2022).
Google ScholarÂ
Pasterkamp, G., den Ruijter, H. M. & Giannarelli, C. False utopia of one unifying description of the vulnerable atherosclerotic plaque: a call for recalibration that appreciates the diversity of mechanisms leading to atherosclerotic disease. Arterioscler. Thromb. Vasc. Biol. 42, e86âe95 (2022).
Google ScholarÂ
de Winther, M. P. J. et al. Translational opportunities of single-cell biology in atherosclerosis. Eur. Heart J. 44, 1216â1230 (2022).
Google ScholarÂ
Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437â1455 (2020).
Google ScholarÂ
Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656â672 (2023).
Google ScholarÂ
Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576â1588 (2019).
Google ScholarÂ
Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112â125 (2023).
Google ScholarÂ
Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc. Res. 119, 2508â2521 (2023).
Google ScholarÂ
Parry, R. et al. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur. Heart J. Cardiovasc. Imaging 23, e504âe525 (2022).
Google ScholarÂ
Detering, L. et al. CC chemokine receptor 5 targeted nanoparticles imaging the progression and regression of atherosclerosis using positron emission tomography/computed tomography. Mol. Pharm. 18, 1386â1396 (2021).
Google ScholarÂ
Poels, K. et al. Immuno-PET imaging of atherosclerotic plaques with [89Zr]Zr-anti-CD40 mAbâproof of concept. Biology 11, 408 (2022).
Google ScholarÂ
Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601â2610 (2022).
Google ScholarÂ
Ronald, J. A. et al. A PET imaging strategy to visualize activated T cells in acute graft-versus-host disease elicited by allogenic hematopoietic cell transplant. Cancer Res. 77, 2893â2902 (2017).
Google ScholarÂ
Mokry, M. et al. Transcriptomic-based clustering of human atherosclerotic plaques identifies subgroups with different underlying biology and clinical presentation. Nat. Cardiovasc. Res. 1, 1140â1155 (2022).
Google ScholarÂ
Papaspyridonos, M. et al. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 26, 1837â1844 (2006).
Google ScholarÂ
Jiangming Sun, P. et al. Spatial transcriptional mapping reveals site-specific pathways underlying human atherosclerotic plaque rupture. J. Am. Coll. Cardiol. 81, 2213â2227 (2023).
Google ScholarÂ
Toczek, J. et al. Positron emission tomography imaging of vessel wall matrix metalloproteinase activity in abdominal aortic aneurysm. Circ. Cardiovasc. Imaging 16, e014615 (2023).
Google ScholarÂ
Kiugel, M. et al. Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the detection of metalloproteinase 2/9 expression in mouse atherosclerotic plaques. Molecules 23, 3168 (2018).
Google ScholarÂ
Fujimoto, S. et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions. J. Am. Coll. Cardiol. 52, 1847â1857 (2008).
Google ScholarÂ
Ohshima, S. et al. Effect of an antimicrobial agent on atherosclerotic plaques: assessment of metalloproteinase activity by molecular imaging. J. Am. Coll. Cardiol. 55, 1240â1249 (2010).
Google ScholarÂ
Razavian, M. et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J. Nucl. Med. 52, 1795â1802 (2011).
Google ScholarÂ
Ohshima, S. et al. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein e or low-density-lipoprotein receptor. J. Nucl. Med. 50, 612â617 (2009).
Google ScholarÂ
Franck, G. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 318, 60â69 (2021).
Google ScholarÂ
Partida, R. A., Libby, P., Crea, F. & Jang, I.-K. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J. 39, 2070â2076 (2018).
Google ScholarÂ
Kolte, D., Libby, P. & Jang, I.-K. New insights into plaque erosion as a mechanism of acute coronary syndromes. JAMA 325, 1043â1044 (2021).
Google ScholarÂ
Jia, H. et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur. Heart J. 38, 792â800 (2017).
Google ScholarÂ
Panizzi, P. et al. Multimodal imaging of bacterial-host interface in mice and piglets with Staphylococcus aureus endocarditis. Sci. Transl. Med. 12, eaay2104 (2020).
Google ScholarÂ
Nakamura, I. et al. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. Biochem. Biophys. Res. Commun. 433, 47â51 (2013).
Google ScholarÂ
Li, X. et al. Targeting P-selectin by gallium-68âlabeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques. Arterioscler. Thromb. Vasc. Biol. 34, 1661â1667 (2014).
Google ScholarÂ
Izquierdo-Garcia, D. et al. Imaging high-risk atherothrombosis using a novel fibrin-binding positron emission tomography probe. Stroke 53, 595â604 (2022).
Google ScholarÂ
Nahrendorf, M. et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging 2, 1213â1222 (2009).
Google ScholarÂ
Senders, M. L. et al. Nanobody-facilitated multiparametric PET/MRI phenotyping of atherosclerosis. JACC Cardiovasc. Imaging 12, 2015â2026 (2019).
Google ScholarÂ
van der Meer, I. M. et al. Risk factors for progression of atherosclerosis measured at multiple sites in the arterial tree: the Rotterdam Study. Stroke 34, 2374â2379 (2003).
Google ScholarÂ
Belcaro, G. et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study (1)). Atherosclerosis 156, 379â387 (2001).
Google ScholarÂ
Laclaustra, M. et al. Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J. Am. Coll. Cardiol. 67, 1263â1274 (2016).
Google ScholarÂ
Fernández-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131, 2104â2113 (2015).
Google ScholarÂ
Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7, 131 (2022).
Google ScholarÂ
Riksen, N. P., Bekkering, S., Mulder, W. J. M. & Netea, M. G. Trained immunity in atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 20, 799â811 (2023).
Google ScholarÂ
Keeter, W. C., Ma, S., Stahr, N., Moriarty, A. K. & Galkina, E. V. Atherosclerosis and multi-organ-associated pathologies. Semin. Immunopathol. 44, 363â374 (2022).
Google ScholarÂ
Janssen, H., Koekkoek, L. L. & Swirski, F. K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat. Rev. Cardiol. 21, 157â169 (2023).
Google ScholarÂ
Tawakol, A. et al. Stress-associated neurobiological pathway linking socioeconomic disparities to cardiovascular disease. J. Am. Coll. Cardiol. 73, 3243â3255 (2019).
Google ScholarÂ
Osborne, M. T. et al. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. Eur. Heart J. 41, 772â782 (2020).
Google ScholarÂ
Abohashem, S. et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. Eur. Heart J. 42, 761â772 (2021).
Google ScholarÂ
Mezue, K. et al. Reduced stress-related neural network activity mediates the effect of alcohol on cardiovascular risk. J. Am. Coll. Cardiol. 81, 2315â2325 (2023).
Google ScholarÂ
Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161â166 (2013).
Google ScholarÂ
van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425â432 (2017).
Kang, D. O. et al. Stress-associated neurobiological activity is linked with acute plaque instability via enhanced macrophage activity: a prospective serial 18F-FDG-PET/CT imaging assessment. Eur. Heart J. 42, 1883â1895 (2021).
Google ScholarÂ
Tarkin, J. M. et al. 68Ga-DOTATATE PET identifies residual myocardial inflammation and bone marrow activation after myocardial infarction. J. Am. Coll. Cardiol. 73, 2489â2491 (2019).
Google ScholarÂ
Verweij, S. L. et al. Prolonged hematopoietic and myeloid cellular response in patients after an acute coronary syndrome measured with 18F-DPA-714 PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1956â1963 (2018).
Google ScholarÂ
Thackeray, J. T. et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging 8, 1417â1426 (2015).
Google ScholarÂ
Thackeray, J. T. et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol. 71, 263â275 (2018).
Google ScholarÂ
Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695â708 (2013).
Google ScholarÂ
Janssen, A. W. M. et al. Arterial wall inflammation assessed by 18F-FDG-PET/CT is higher in individuals with type 1 diabetes and associated with circulating inflammatory proteins. Cardiovasc. Res. 119, 1942â1951 (2023).
Google ScholarÂ
Tall, A. R. & Fuster, J. J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat. Cardiovasc. Res. 1, 116â124 (2022).
Google ScholarÂ
Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events. JACC Cardiovasc. Imaging 8, 121â130 (2015).
Google ScholarÂ
Rohde, D. et al. Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. Nat. Cardiovasc. Res. 1, 28â44 (2022).
Google ScholarÂ
Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17â28 (2017).
Google ScholarÂ
Patel, N. H. et al. Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: an observational study. Atherosclerosis 339, 20â26 (2021).
Google ScholarÂ
Kaiser, H. et al. Association between vascular inflammation and inflammation in adipose tissue, spleen, and bone marrow in patients with psoriasis. Life 11, 305 (2021).
Google ScholarÂ
Schwartz, D. M. et al. PET/CT-based characterization of 18F-FDG uptake in various tissues reveals novel potential contributions to coronary artery disease in psoriatic arthritis. Front. Immunol. 13, 909760 (2022).
Google ScholarÂ
Stotts, C., Corrales-Medina, V. F. & Rayner, K. J. Pneumonia-induced inflammation, resolution and cardiovascular disease: causes, consequences and clinical opportunities. Circ. Res. 132, 751â774 (2023).
Google ScholarÂ
Corrales-Medina, V. F. et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA 313, 264 (2015).
Google ScholarÂ
Chow, E. J. et al. Acute cardiovascular events associated with influenza in hospitalized adults. Ann. Intern. Med. 173, 605â613 (2020).
Google ScholarÂ
Boczar, K. E. et al. Vascular inflammation during and after community-acquired pneumonia as measured by 18F-FDG-PET/CT imaging. JACC Cardiovasc. Imaging 16, 562â564 (2023).
Google ScholarÂ
Montecucco, F. & Mach, F. Update on statin-mediated anti-inflammatory activities in atherosclerosis. Semin. Immunopathol. 31, 127â142 (2009).
Google ScholarÂ
Tawakol, A. et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J. Am. Coll. Cardiol. 62, 909â917 (2013).
Google ScholarÂ
Pirro, M. et al. Effect of statin therapy on arterial wall inflammation based on 18F-FDG PET/CT: a systematic review and meta-analysis of interventional studies. J. Clin. Med. 8, 118 (2019).
Google ScholarÂ
Palaskas, N., LopezâMattei, J., Durand, J. B., Iliescu, C. & Deswal, A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J. Am. Heart Assoc. 9, e013757 (2020).
Google ScholarÂ
Vuong, J. T. et al. Immune checkpoint therapies and atherosclerosis: mechanisms and clinical implications: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79, 577â593 (2022).
Google ScholarÂ
Suero-Abreu, G. A., Zanni, M. V. & Neilan, T. G. Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC CardioOncol. state-of-the-art review. JACC CardioOncol. 4, 598â615 (2022).
Google ScholarÂ
Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299â2311 (2020).
Google ScholarÂ
Calabretta, R. et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation 142, 2396â2398 (2020).
Google ScholarÂ
Poels, K. et al. Immune checkpoint inhibitor therapy aggravates t cellâdriven plaque inflammation in atherosclerosis. JACC CardioOncol. 2, 599â610 (2020).
Google ScholarÂ
Bauer, D., Sarrett, S. M., Lewis, J. S. & Zeglis, B. M. Click chemistry: a transformative technology in nuclear medicine. Nat. Protoc. 18, 1659â1668 (2023).
Google ScholarÂ
Keinänen, O. et al. Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. Proc. Natl Acad. Sci. USA 117, 28316â28327 (2020).
Google ScholarÂ
Cherry, S. R. et al. Total-body imaging: transforming the role of positron emission tomography. Sci. Transl. Med. 9, eaaf6169 (2017).
Google ScholarÂ
Cherry, S. R. et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J. Nucl. Med. 59, 3â12 (2018).
Google ScholarÂ
van Rijsewijk, N. D. et al. Ultra-low dose infection imaging of a newborn without sedation using long axial field-of-view PET/CT. Eur. J. Nucl. Med. Mol. Imaging 50, 622â623 (2023).
Google ScholarÂ
Chen, W. et al. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [18F]-FDG. Eur. J. Nucl. Med. Mol. Imaging 49, 4145â4155 (2022).
Google ScholarÂ
Derlin, T., Werner, R. A., Weiberg, D., Derlin, K. & Bengel, F. M. Parametric imaging of biologic activity of atherosclerosis using dynamic whole-body positron emission tomography. JACC Cardiovasc. Imaging 15, 2098â2108 (2022).
Google ScholarÂ
Derlin, T. et al. Exploring vessel wall biology in vivo by ultra-sensitive total-body positron emission tomography. J. Nucl. Med. 64, 416â422 (2022).
Google ScholarÂ
Evans, N. R. et al. Dual-tracer positron-emission tomography for identification of culprit carotid plaques and pathophysiology in vivo. Circ. Cardiovasc. Imaging 13, e009539 (2020).
Google ScholarÂ
Bell, C. et al. Dual acquisition of 18F-FMISO and 18F-FDOPA. Phys. Med. Biol. 59, 3925 (2014).
Google ScholarÂ
Andreyev, A., Celler, A. & Dual-isotope, P. E. T. using positron-gamma emitters. Phys. Med. Biol. 56, 4539â4556 (2011).
Google ScholarÂ
Pratt, E. C. et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positronâelectron annihilation and prompt gamma emissions. Nat. Biomed. Eng. 7, 1028â1039 (2023).
Google ScholarÂ
Moskal, P. & StÄpieÅ, E. Å. Perspectives on translation of positronium imaging into clinics. Front. Phys. 10, https://doi.org/10.3389/fphy.2022.969806 (2022).
Chen, H. M., Horn, J. Dvan & Jean, Y. C. Applications of positron annihilation spectroscopy to life science. Defect. Diffus. Forum 331, 275â293 (2012).
Google ScholarÂ
Moskal, P. & StÄpieÅ, E. Å. Positronium as a biomarker of hypoxia. Bio-Algorithms Med-Syst. 17, 311â319 (2021).
Google ScholarÂ
Shibuya, K., Saito, H., Nishikido, F., Takahashi, M. & Yamaya, T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun. Phys. 3, 173 (2020).
Google ScholarÂ
Dulski, K. et al. The J-PET detectorâa tool for precision studies of ortho-positronium decays. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers Detect. Associated Equip. 1008, 165452 (2021).
Google ScholarÂ
Moskal, P. et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 7, eabh4394 (2021).
Google ScholarÂ
Föllmer, B. et al. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat. Rev. Cardiol. 21, 51â64 (2023).
Google ScholarÂ
IMAGINE-NAHUNET-PET scanners. International Atomic Energy Agency. https://public.tableau.com/views/IMAGINE-NAHUNET-PETScanners/PETScanners?:embed=y&:showVizHome=no&:host_url=https%3A%2F%2Fpublic.tableau.com%2F&:embed_code_version=3&:tabs=no&:toolbar=yes&:animate_transition=yes&:display_static_image=no&:display_spinner=no&:display_overlay=yes&:display_count=yes&:language=en-GB&:loadOrderID=0 (2024).
IAEA. Radiation in everyday life. https://www.iaea.org/Publications/Factsheets/English/radlife (2014).
Rominger, A. et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J. Nucl. Med. 50, 1611â1620 (2009).
Google ScholarÂ
Tahara, N. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 48, 1825â1831 (2006).
Google ScholarÂ
Kwiecinski, J. et al. Bypass grafting and native coronary artery disease activity. JACC Cardiovasc. Imaging 15, 875â887 (2022).
Google ScholarÂ
Liu, Y. et al. Molecular imaging of atherosclerotic plaque with 64Cu-labeled natriuretic peptide and PET. J. Nucl. Med. 51, 85â91 (2010).
Google ScholarÂ
Liu, Y., Pierce, R., Luehmann, H. P., Sharp, T. L. & Welch, M. J. PET imaging of chemokine receptors in vascular injury-accelerated atherosclerosis. J. Nucl. Med. 54, 1135â1141 (2013).
Google ScholarÂ
Baba, O. et al. CXCR4-binding positron emission tomography tracers link monocyte recruitment and endothelial injury in murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 41, 822â836 (2021).
Google ScholarÂ
Luehmann, H. P. et al. PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J. Nucl. Med. 57, 1124â1129 (2016).
Google ScholarÂ
Laitinen, I. et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging 2, 331â338 (2009).
Google ScholarÂ
Su, H. et al. Atherosclerotic plaque uptake of a novel integrin tracer 18F-flotegatide in a mouse model of atherosclerosis. J. Nucl. Cardiol. 21, 553â562 (2014).
Google ScholarÂ
StÃ¥hle, M. et al. Evaluation of glucagon-like peptide-1 receptor expression in nondiabetic and diabetic atherosclerotic mice using PET tracer 68Ga-NODAGA-exendin-4. Am. J. Physiol. Endocrinol. Metab. 320, E989âE998 (2021).
Google ScholarÂ
Maekawa, K. et al. Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 337, 7â17 (2021).
Google ScholarÂ
Kopecky, C. et al. Translocator protein localises to CD11b+ macrophages in atherosclerosis. Atherosclerosis 284, 153â159 (2019).
Google ScholarÂ
Cuhlmann, S. et al. In vivo mapping of vascular inflammation using the translocator protein tracer 18F-FEDAA1106. Mol. Imaging 13, https://doi.org/10.2310/7290.2014.00014 (2014).
Hellberg, S. et al. 18-kDa translocator protein ligand 18F-FEMPA: biodistribution and uptake into atherosclerotic plaques in mice. J. Nucl. Cardiol. 24, 862â871 (2017).
Google ScholarÂ
Hellberg, S. et al. Positron emission tomography imaging of macrophages in atherosclerosis with 18F-GE-180, a radiotracer for translocator protein (TSPO). Contrast Media Mol. Imaging 2018, e9186902 (2018).
Google ScholarÂ
Ahmed, M. et al. Molecular imaging of inflammation in a mouse model of atherosclerosis using a zirconium-89-labeled probe. Int. J. Nanomed. 15, 6137â6152 (2020).
Google ScholarÂ
Silvola, J. M. U. et al. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Sci. Rep. 8, 9720 (2018).
Google ScholarÂ
Rinne, P. et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol. Imaging Biol. 18, 99â108 (2016).
Google ScholarÂ
Fu, Z. et al. P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur. J. Nucl. Med. Mol. Imaging 49, 2595â2604 (2022).
Google ScholarÂ
Palani, S. et al. Exploiting glutamine consumption in atherosclerotic lesions by positron emission tomography tracer (2S,4R)-4-18F-fluoroglutamine. Front. Immunol. 13, 821423 (2022).
Google ScholarÂ
Varasteh, Z. et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Res. 9, 5 (2019).
Google ScholarÂ
Kim, E. J. et al. Novel PET imaging of atherosclerosis with 68Ga-labeled NOTA-neomannosylated human serum albumin. J. Nucl. Med. 57, 1792â1797 (2016).
Google ScholarÂ
Tahara, N. et al. 2-Deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 20, 215â219 (2014).
Google ScholarÂ
Varasteh, Z. et al. Imaging atherosclerotic plaques by targeting galectin-3 and activated macrophages using (89Zr)-DFO- galectin3-F(abâ)2 mAb. Theranostics 11, 1864â1876 (2021).
Google ScholarÂ
Keliher, E. J. et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 8, 14064 (2017).
Google ScholarÂ
Majmudar, M. D. et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ. Res. 112, 755â761 (2013).
Google ScholarÂ
Nahrendorf, M. et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117, 379â387 (2008).
Google ScholarÂ
Nahrendorf, M. et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler. Thromb. Vasc. Biol. 31, 750â757 (2011).
Google ScholarÂ
Nahrendorf, M. et al. Imaging cardiovascular and lung macrophages with the positron emission tomography sensor 64Cu-macrin in mice, rabbits, and pigs. Circ. Cardiovasc. Imaging 13, e010586 (2020).
Google ScholarÂ
Pérez-Medina, C. et al. In vivo PET imaging of HDL in multiple atherosclerosis models. JACC Cardiovasc. Imaging 9, 950â961 (2016).
Google ScholarÂ
Seo, J. W. et al. 64Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug. Chem. 25, 231â239 (2014).
Google ScholarÂ
Yang, T. et al. 18F-ASEM imaging for evaluating atherosclerotic plaques linked to α7-nicotinic acetylcholine receptor. Front. Bioeng. Biotechnol. 9, 684221 (2021).
Google ScholarÂ
Wang, D., Yao, Y., Wang, S., Zhang, H. & He, Z.-X. The availability of the α7-nicotinic acetylcholine receptor in early identification of vulnerable atherosclerotic plaques: a study using a novel 18F-label radioligand PET. Front. Bioeng. Biotechnol. 9, 640037 (2021).
Google ScholarÂ
Senders, M. L. et al. PET/MR imaging of malondialdehyde-acetaldehyde epitopes with a human antibody detects clinically relevant atherothrombosis. J. Am. Coll. Cardiol. 71, 321â335 (2018).
Google ScholarÂ
Elmaleh, D. R. et al. Detection of inflamed atherosclerotic lesions with diadenosine-5â²,5â²â²â²-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 15992â15996 (2006).
Google ScholarÂ
De Dominicis, C. et al. [18F]ZCDD083: a PFKFB3-targeted PET tracer for atherosclerotic plaque imaging. ACS Med. Chem. Lett. 11, 933â939 (2020).
Google ScholarÂ
Tarkin, J. M. et al. Imaging atherosclerosis. Circ. Res. 118, 750â769 (2016).
Google ScholarÂ
Stendahl, J. C., Kwan, J. M., Pucar, D. & Sadeghi, M. M. Radiotracers to address unmet clinical needs in cardiovascular imaging, part 1: technical considerations and perfusion and neuronal imaging. J. Nucl. Med. 63, 649â658 (2022).
Google ScholarÂ
Stendahl, J. C., Kwan, J. M., Pucar, D. & Sadeghi, M. M. Radiotracers to address unmet clinical needs in cardiovascular imaging, part 2: inflammation, fibrosis, thrombosis, calcification, and amyloidosis imaging. J. Nucl. Med. 63, 986â994 (2022).
Google ScholarÂ
Aboyans, V. et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 39, 763â816 (2018).
Google ScholarÂ
Mendieta, G. et al. Determinants of progression and regression of subclinical atherosclerosis over 6 years. J. Am. Coll. Cardiol. 82, 2069â2083 (2023).
Google ScholarÂ
Pontone, G. et al. Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging-part I. Eur. Heart J. Cardiovasc. Imaging 23, 299â314 (2022).
Google ScholarÂ
SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385, 2383â2391 (2015).
Google ScholarÂ
Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452â1462 (2020).
Google ScholarÂ
Kaiser, Y. et al. Association of lipoprotein(a) with atherosclerotic plaque progression. J. Am. Coll. Cardiol. 79, 223â233 (2022).
Google ScholarÂ
Tzolos, E. et al. Pericoronary adipose tissue attenuation, low-attenuation plaque burden, and 5-year risk of myocardial infarction. JACC Cardiovasc. Imaging 15, 1078â1088 (2022).
Google ScholarÂ
Yoon, Y. E. et al. Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J. Am. Coll. Cardiol. 60, 2316â2322 (2012).
Google ScholarÂ
Hagar, M. T. et al. Accuracy of ultrahigh-resolution photon-counting CT for detecting coronary artery disease in a high-risk population. Radiology 307, e223305 (2023).
Google ScholarÂ
von Zur Mühlen, C. et al. Coronary magnetic resonance imaging after routine implantation of bioresorbable vascular scaffolds allows non-invasive evaluation of vascular patency. PLoS ONE 13, e0191413 (2018).
Google ScholarÂ
Whittington, B., Dweck, M. R., van Beek, E. J. R., Newby, D. & Williams, M. C. PET-MRI of coronary artery disease. J. Magn. Reson. Imaging 57, 1301â1311 (2023).
Google ScholarÂ
Schindler, A. et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data. JACC Cardiovasc. Imaging 13, 395â406 (2020).
Google ScholarÂ
Mintz, G. S., Matsumura, M., Ali, Z. & Maehara, A. Clinical utility of intravascular imaging: past, present, and future. JACC Cardiovasc. Imaging 15, 1799â1820 (2022).
Google ScholarÂ
Dilsizian, V. et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J. Nucl. Cardiol. 23, 1187â1226 (2016).
Google ScholarÂ
Maddahi, J. et al. Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery disease. J. Am. Coll. Cardiol. 76, 391â401 (2020).
Google ScholarÂ
Almeida, A. G. et al. Multimodality imaging of myocardial viability: an expert consensus document from the European Association of Cardiovascular Imaging (EACVI). Eur. Heart J. Cardiovasc. Imaging 22, e97âe125 (2021).
Google ScholarÂ
Neumann, F.-J. et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur. Heart J. 40, 87â165 (2019).
Google ScholarÂ
Rischpler, C. et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ. Cardiovasc. Imaging 9, e004316 (2016).
Google ScholarÂ
Lavine, K. J. et al. CCR2 imaging in human ST-segment elevation myocardial infarction. Nat. Cardiovasc. Res. 2, 874â880 (2023).
Google ScholarÂ
Maier, A. et al. Multiparametric immunoimaging maps inflammatory signatures in murine myocardial infarction models. JACC Basic Transl. Sci. 2, 874â880 (2023).
Werner, R. A. et al. CXCR4-targeted imaging of post-infarct myocardial tissue inflammation: prognostic value after reperfused myocardial infarction. JACC Cardiovasc. Imaging 15, 372â374 (2022).
Google ScholarÂ
Hess, A. et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur. Heart J. 41, 3564â3575 (2020).
Google ScholarÂ
Heckmann, M. B. et al. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ. Cardiovasc. Imaging 13, e010628 (2020).
Google ScholarÂ
Diekmann, J. et al. Cardiac fibroblast activation in patients early after acute myocardial infarction: integration with MR tissue characterization and subsequent functional outcome. J. Nucl. Med. 63, 1415â1423 (2022).
Google ScholarÂ
Marchesseau, S. et al. Hybrid PET/CT and PET/MRI imaging of vulnerable coronary plaque and myocardial scar tissue in acute myocardial infarction. J. Nucl. Cardiol. 25, 2001â2011 (2018).
Google ScholarÂ
Jenkins, W. S. A. et al. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart 103, 607â615 (2017).
Google ScholarÂ
Taylor, M. et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med. 42, 55â62 (2001).
Google ScholarÂ
Maes, A. F. et al. Early assessment of regional myocardial blood flow and metabolism in thrombolysis in myocardial infarction flow grade 3 reperfused myocardial infarction using carbon-11-acetate. J. Am. Coll. Cardiol. 37, 30â36 (2001).
Google ScholarÂ
Morooka, M. et al. 11C-Methionine PET of acute myocardial infarction. J. Nucl. Med. 50, 1283â1287 (2009).
Google ScholarÂ
Fallavollita, J. A. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J. Am. Coll. Cardiol. 63, 141â149 (2014).
Google ScholarÂ
Lavine, K. J. & Liu, Y. The dynamic cardiac cellular landscape: visualization by molecular imaging. Nat. Rev. Cardiol. 19, 345â347 (2022).
Google ScholarÂ
[ad_2]
Source link