[ad_1]

  • Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article 
    CAS 

    Google Scholar 

  • Antonopoulos, A. S. et al. Biomarkers of vascular inflammation for cardiovascular risk prognostication. JACC Cardiovasc. Imaging 15, 460–471 (2022).

    Article 

    Google Scholar 

  • Mézquita, A. J. V. et al. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat. Rev. Cardiol. 20, 696–714 (2023).

    Article 

    Google Scholar 

  • Fernández-Friera, L. et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J. Am. Coll. Cardiol. 73, 1371–1382 (2019).

    Article 

    Google Scholar 

  • Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging 8, 493–494 (2015).

    Article 

    Google Scholar 

  • Ripa, R. S. et al. Effect of liraglutide on arterial inflammation assessed as [18F]FDG uptake in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Circ. Cardiovasc. Imaging 14, e012174 (2021).

    Article 

    Google Scholar 

  • Devesa, A. et al. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur. Heart J. 43, 1809–1828 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

    Article 

    Google Scholar 

  • Moss, A. et al. Coronary atherosclerotic plaque activity and future coronary events. JAMA Cardiol. 8, 755–764 (2023).

    Article 

    Google Scholar 

  • Kwiecinski, J. et al. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J. Am. Coll. Cardiol. 75, 3061–3074 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fletcher, A. J. et al. Thoracic aortic 18F-sodium fluoride activity and ischemic stroke in patients with established cardiovascular disease. JACC Cardiovasc. Imaging 15, 1274–1288 (2022).

    Article 

    Google Scholar 

  • Eberhardt, N. & Giannarelli, C. How single-cell technologies have provided new insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 243–252 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tawakol, A. et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818–1824 (2006).

    Article 

    Google Scholar 

  • Cheng, V. Y. et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J. Nucl. Med. 53, 575–583 (2012).

    Article 
    CAS 

    Google Scholar 

  • Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705–713 (2014).

    Article 

    Google Scholar 

  • Figueroa, A. L. et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc. Imaging 6, 1250–1259 (2013).

    Article 

    Google Scholar 

  • Moon, S. H. et al. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc. Imaging 8, 949–956 (2015).

    Article 

    Google Scholar 

  • Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article 

    Google Scholar 

  • Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

    Article 
    CAS 

    Google Scholar 

  • Sahota, A. et al. Atherosclerosis inflammation and burden in young adult smokers and vapers measured by PET/MR. Atherosclerosis 325, 110–116 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kundel, V. et al. Sleep duration and vascular inflammation using hybrid positron emission tomography/magnetic resonance imaging: results from the Multi-Ethnic Study of Atherosclerosis (MESA). J. Clin. Sleep Med. 17, 2009–2018 (2021).

    Article 

    Google Scholar 

  • Maier, A. et al. Pulmonary artery 18F-fluorodeoxyglucose uptake by PET/CMR as a marker of pulmonary hypertension in sarcoidosis. JACC Cardiovasc. Imaging 15, 108–120 (2022).

    Article 

    Google Scholar 

  • Tarkin, J. M., Joshi, F. R. & Rudd, J. H. F. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014).

    Article 
    CAS 

    Google Scholar 

  • Robson, P. M. et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc. Imaging 10, 1103–1112 (2017).

    Article 

    Google Scholar 

  • Majeed, K. et al. Coronary 18F-sodium fluoride PET detects high-risk plaque features on optical coherence tomography and CT-angiography in patients with acute coronary syndrome. Atherosclerosis 319, 142–148 (2021).

    Article 
    CAS 

    Google Scholar 

  • Doris, M. K. et al. Coronary 18F-fluoride uptake and progression of coronary artery calcification. Circ. Cardiovasc. Imaging 13, e011438 (2020).

    Article 

    Google Scholar 

  • Daghem, M. et al. Temporal changes in coronary 18F-fluoride plaque uptake in patients with coronary atherosclerosis. J. Nucl. Med. 64, 1478–1486 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chowdhury, M. M. et al. Vascular positron emission tomography and restenosis in symptomatic peripheral arterial disease: a prospective clin. study. JACC Cardiovasc. Imaging 13, 1008–1017 (2020).

    Article 

    Google Scholar 

  • Syed, M. B. J. et al. 18F-sodium fluoride positron emission tomography and computed tomography in acute aortic syndrome. JACC Cardiovasc. Imaging 15, 1291–1304 (2022).

    Article 

    Google Scholar 

  • Ndlovu, H. et al. [68Ga]Ga-NODAGAZOL uptake in atherosclerotic plaques correlates with the cardiovascular risk profile of patients. Ann. Nucl. Med. 36, 684–692 (2022).

    Article 
    CAS 

    Google Scholar 

  • Toner, Y. C. et al. Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Sci. Rep. 12, 6185 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, X. et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res. 2, 52 (2012).

    Article 

    Google Scholar 

  • Rominger, A. et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J. Nucl. Med. 51, 193–197 (2010).

    Article 

    Google Scholar 

  • Jensen, J. K., Madsen, J. S., Jensen, M. E. K., Kjaer, A. & Ripa, R. S. [64Cu]Cu-DOTATATE PET metrics in the investigation of atherosclerotic inflammation in humans. J. Nucl. Cardiol. 30, 986–1000 (2023).

    Article 

    Google Scholar 

  • Tarkin, J. M. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774–1791 (2017).

    Article 
    CAS 

    Google Scholar 

  • Jensen, J. K. et al. Effect of 26 weeks of liraglutide treatment on coronary artery inflammation in type 2 diabetes quantified by [64Cu]Cu-DOTATATE PET/CT: results from the LIRAFLAME trial. Front. Endocrinol. 12, 790405 (2021).

    Article 

    Google Scholar 

  • Oostveen, R. F. et al. Atorvastatin lowers 68Ga-DOTATATE uptake in coronary arteries, bone marrow and spleen in individuals with type 2 diabetes. Diabetologia 66, 2164–2169 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ćorovi, Ć. A. et al. Somatostatin receptor PET/MR imaging of inflammation in patients with large vessel vasculitis and atherosclerosis. J. Am. Coll. Cardiol. 81, 336–354 (2023).

    Article 

    Google Scholar 

  • Li, X. et al. [68Ga]Pentixafor-PET/MRI for the detection of chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging 45, 558–566 (2018).

    Article 
    CAS 

    Google Scholar 

  • Weiberg, D. et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J. Nucl. Med. 59, 266–272 (2018).

    Article 
    CAS 

    Google Scholar 

  • Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402 (2003).

    Article 
    CAS 

    Google Scholar 

  • Bot, I. et al. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J. Mol. Cell. Cardiol. 74, 44–52 (2014).

    Article 
    CAS 

    Google Scholar 

  • Derlin, T. et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1934–1944 (2018).

    Article 
    CAS 

    Google Scholar 

  • Khare, H. A. et al. In vivo detection of urokinase-type plasminogen activator receptor (uPAR) expression in arterial atherogenesis using [64Cu]Cu-DOTA-AE105 positron emission tomography (PET). Atherosclerosis 352, 103–111 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pugliese, F. et al. Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J. Am. Coll. Cardiol. 56, 653–661 (2010).

    Article 

    Google Scholar 

  • Lamare, F. et al. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT. J. Nucl. Med. 52, 33–39 (2011).

    Article 

    Google Scholar 

  • Gaemperli, O. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur. Heart J. 33, 1902–1910 (2012).

    Article 
    CAS 

    Google Scholar 

  • Dietz, M. et al. Imaging angiogenesis in atherosclerosis in large arteries with 68Ga-NODAGA-RGD PET/CT: relationship with clinical atherosclerotic cardiovascular disease. EJNMMI Res. 11, 71 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jenkins, W. S. et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart 105, 1868–1875 (2019).

    Article 
    CAS 

    Google Scholar 

  • Joshi, F. R. et al. Vascular imaging with 18F-fluorodeoxyglucose positron emission tomography is influenced by hypoxia. J. Am. Coll. Cardiol. 69, 1873–1874 (2017).

    Article 

    Google Scholar 

  • van der Valk, F. M. et al. In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc. Imaging 8, 1340–1341 (2015).

    Article 

    Google Scholar 

  • Nie, X. et al. 64Cu-ATSM positron emission tomography/magnetic resonance imaging of hypoxia in human atherosclerosis. Circ. Cardiovasc. Imaging 13, e009791 (2020).

    Article 

    Google Scholar 

  • Kato, K. et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur. J. Nucl. Med. Mol. Imaging 36, 1622–1628 (2009).

    Article 
    CAS 

    Google Scholar 

  • Vöö, S. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 18F-fluorocholine positron emission tomography-computed tomography: prospective study on vulnerable atheroma with immunohistochemical validation. Circ. Cardiovasc. Imaging 9, e004467 (2016).

    Article 

    Google Scholar 

  • Ye, Y.-X. et al. Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ. Res. 117, 835–845 (2015).

    Article 
    CAS 

    Google Scholar 

  • Bing, R. et al. 18F-GP1 positron emission tomography and bioprosthetic aortic valve thrombus. JACC Cardiovasc. Imaging 15, 1107–1120 (2022).

    Article 

    Google Scholar 

  • Pasterkamp, G., den Ruijter, H. M. & Giannarelli, C. False utopia of one unifying description of the vulnerable atherosclerotic plaque: a call for recalibration that appreciates the diversity of mechanisms leading to atherosclerotic disease. Arterioscler. Thromb. Vasc. Biol. 42, e86–e95 (2022).

    Article 
    CAS 

    Google Scholar 

  • de Winther, M. P. J. et al. Translational opportunities of single-cell biology in atherosclerosis. Eur. Heart J. 44, 1216–1230 (2022).

    Article 

    Google Scholar 

  • Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).

    Article 

    Google Scholar 

  • Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article 
    CAS 

    Google Scholar 

  • Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112–125 (2023).

    Article 

    Google Scholar 

  • Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc. Res. 119, 2508–2521 (2023).

    Article 
    CAS 

    Google Scholar 

  • Parry, R. et al. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur. Heart J. Cardiovasc. Imaging 23, e504–e525 (2022).

    Article 

    Google Scholar 

  • Detering, L. et al. CC chemokine receptor 5 targeted nanoparticles imaging the progression and regression of atherosclerosis using positron emission tomography/computed tomography. Mol. Pharm. 18, 1386–1396 (2021).

    Article 
    CAS 

    Google Scholar 

  • Poels, K. et al. Immuno-PET imaging of atherosclerotic plaques with [89Zr]Zr-anti-CD40 mAb—proof of concept. Biology 11, 408 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ronald, J. A. et al. A PET imaging strategy to visualize activated T cells in acute graft-versus-host disease elicited by allogenic hematopoietic cell transplant. Cancer Res. 77, 2893–2902 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mokry, M. et al. Transcriptomic-based clustering of human atherosclerotic plaques identifies subgroups with different underlying biology and clinical presentation. Nat. Cardiovasc. Res. 1, 1140–1155 (2022).

    Article 

    Google Scholar 

  • Papaspyridonos, M. et al. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 26, 1837–1844 (2006).

    Article 
    CAS 

    Google Scholar 

  • Jiangming Sun, P. et al. Spatial transcriptional mapping reveals site-specific pathways underlying human atherosclerotic plaque rupture. J. Am. Coll. Cardiol. 81, 2213–2227 (2023).

    Article 

    Google Scholar 

  • Toczek, J. et al. Positron emission tomography imaging of vessel wall matrix metalloproteinase activity in abdominal aortic aneurysm. Circ. Cardiovasc. Imaging 16, e014615 (2023).

    Article 

    Google Scholar 

  • Kiugel, M. et al. Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the detection of metalloproteinase 2/9 expression in mouse atherosclerotic plaques. Molecules 23, 3168 (2018).

    Article 

    Google Scholar 

  • Fujimoto, S. et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions. J. Am. Coll. Cardiol. 52, 1847–1857 (2008).

    Article 
    CAS 

    Google Scholar 

  • Ohshima, S. et al. Effect of an antimicrobial agent on atherosclerotic plaques: assessment of metalloproteinase activity by molecular imaging. J. Am. Coll. Cardiol. 55, 1240–1249 (2010).

    Article 

    Google Scholar 

  • Razavian, M. et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J. Nucl. Med. 52, 1795–1802 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ohshima, S. et al. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein e or low-density-lipoprotein receptor. J. Nucl. Med. 50, 612–617 (2009).

    Article 
    CAS 

    Google Scholar 

  • Franck, G. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 318, 60–69 (2021).

    Article 

    Google Scholar 

  • Partida, R. A., Libby, P., Crea, F. & Jang, I.-K. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J. 39, 2070–2076 (2018).

    Article 

    Google Scholar 

  • Kolte, D., Libby, P. & Jang, I.-K. New insights into plaque erosion as a mechanism of acute coronary syndromes. JAMA 325, 1043–1044 (2021).

    Article 

    Google Scholar 

  • Jia, H. et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur. Heart J. 38, 792–800 (2017).

    CAS 

    Google Scholar 

  • Panizzi, P. et al. Multimodal imaging of bacterial-host interface in mice and piglets with Staphylococcus aureus endocarditis. Sci. Transl. Med. 12, eaay2104 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nakamura, I. et al. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. Biochem. Biophys. Res. Commun. 433, 47–51 (2013).

    Article 
    CAS 

    Google Scholar 

  • Li, X. et al. Targeting P-selectin by gallium-68–labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques. Arterioscler. Thromb. Vasc. Biol. 34, 1661–1667 (2014).

    Article 
    CAS 

    Google Scholar 

  • Izquierdo-Garcia, D. et al. Imaging high-risk atherothrombosis using a novel fibrin-binding positron emission tomography probe. Stroke 53, 595–604 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nahrendorf, M. et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging 2, 1213–1222 (2009).

    Article 

    Google Scholar 

  • Senders, M. L. et al. Nanobody-facilitated multiparametric PET/MRI phenotyping of atherosclerosis. JACC Cardiovasc. Imaging 12, 2015–2026 (2019).

    Article 

    Google Scholar 

  • van der Meer, I. M. et al. Risk factors for progression of atherosclerosis measured at multiple sites in the arterial tree: the Rotterdam Study. Stroke 34, 2374–2379 (2003).

    Article 

    Google Scholar 

  • Belcaro, G. et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study (1)). Atherosclerosis 156, 379–387 (2001).

    Article 
    CAS 

    Google Scholar 

  • Laclaustra, M. et al. Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J. Am. Coll. Cardiol. 67, 1263–1274 (2016).

    Article 

    Google Scholar 

  • Fernández-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131, 2104–2113 (2015).

    Article 

    Google Scholar 

  • Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7, 131 (2022).

    Article 
    CAS 

    Google Scholar 

  • Riksen, N. P., Bekkering, S., Mulder, W. J. M. & Netea, M. G. Trained immunity in atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 20, 799–811 (2023).

    Article 

    Google Scholar 

  • Keeter, W. C., Ma, S., Stahr, N., Moriarty, A. K. & Galkina, E. V. Atherosclerosis and multi-organ-associated pathologies. Semin. Immunopathol. 44, 363–374 (2022).

    Article 

    Google Scholar 

  • Janssen, H., Koekkoek, L. L. & Swirski, F. K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat. Rev. Cardiol. 21, 157–169 (2023).

    Article 

    Google Scholar 

  • Tawakol, A. et al. Stress-associated neurobiological pathway linking socioeconomic disparities to cardiovascular disease. J. Am. Coll. Cardiol. 73, 3243–3255 (2019).

    Article 

    Google Scholar 

  • Osborne, M. T. et al. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. Eur. Heart J. 41, 772–782 (2020).

    Article 

    Google Scholar 

  • Abohashem, S. et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. Eur. Heart J. 42, 761–772 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mezue, K. et al. Reduced stress-related neural network activity mediates the effect of alcohol on cardiovascular risk. J. Am. Coll. Cardiol. 81, 2315–2325 (2023).

    Article 

    Google Scholar 

  • Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article 
    CAS 

    Google Scholar 

  • van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425–432 (2017).

    Google Scholar 

  • Kang, D. O. et al. Stress-associated neurobiological activity is linked with acute plaque instability via enhanced macrophage activity: a prospective serial 18F-FDG-PET/CT imaging assessment. Eur. Heart J. 42, 1883–1895 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tarkin, J. M. et al. 68Ga-DOTATATE PET identifies residual myocardial inflammation and bone marrow activation after myocardial infarction. J. Am. Coll. Cardiol. 73, 2489–2491 (2019).

    Article 

    Google Scholar 

  • Verweij, S. L. et al. Prolonged hematopoietic and myeloid cellular response in patients after an acute coronary syndrome measured with 18F-DPA-714 PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1956–1963 (2018).

    Article 

    Google Scholar 

  • Thackeray, J. T. et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging 8, 1417–1426 (2015).

    Article 

    Google Scholar 

  • Thackeray, J. T. et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol. 71, 263–275 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article 
    CAS 

    Google Scholar 

  • Janssen, A. W. M. et al. Arterial wall inflammation assessed by 18F-FDG-PET/CT is higher in individuals with type 1 diabetes and associated with circulating inflammatory proteins. Cardiovasc. Res. 119, 1942–1951 (2023).

    Article 
    CAS 

    Google Scholar 

  • Tall, A. R. & Fuster, J. J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat. Cardiovasc. Res. 1, 116–124 (2022).

    Article 

    Google Scholar 

  • Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article 

    Google Scholar 

  • Rohde, D. et al. Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. Nat. Cardiovasc. Res. 1, 28–44 (2022).

    Article 

    Google Scholar 

  • Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17–28 (2017).

    Article 
    CAS 

    Google Scholar 

  • Patel, N. H. et al. Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: an observational study. Atherosclerosis 339, 20–26 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kaiser, H. et al. Association between vascular inflammation and inflammation in adipose tissue, spleen, and bone marrow in patients with psoriasis. Life 11, 305 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schwartz, D. M. et al. PET/CT-based characterization of 18F-FDG uptake in various tissues reveals novel potential contributions to coronary artery disease in psoriatic arthritis. Front. Immunol. 13, 909760 (2022).

    Article 
    CAS 

    Google Scholar 

  • Stotts, C., Corrales-Medina, V. F. & Rayner, K. J. Pneumonia-induced inflammation, resolution and cardiovascular disease: causes, consequences and clinical opportunities. Circ. Res. 132, 751–774 (2023).

    Article 
    CAS 

    Google Scholar 

  • Corrales-Medina, V. F. et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA 313, 264 (2015).

    Article 

    Google Scholar 

  • Chow, E. J. et al. Acute cardiovascular events associated with influenza in hospitalized adults. Ann. Intern. Med. 173, 605–613 (2020).

    Article 

    Google Scholar 

  • Boczar, K. E. et al. Vascular inflammation during and after community-acquired pneumonia as measured by 18F-FDG-PET/CT imaging. JACC Cardiovasc. Imaging 16, 562–564 (2023).

    Article 

    Google Scholar 

  • Montecucco, F. & Mach, F. Update on statin-mediated anti-inflammatory activities in atherosclerosis. Semin. Immunopathol. 31, 127–142 (2009).

    Article 
    CAS 

    Google Scholar 

  • Tawakol, A. et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J. Am. Coll. Cardiol. 62, 909–917 (2013).

    Article 
    CAS 

    Google Scholar 

  • Pirro, M. et al. Effect of statin therapy on arterial wall inflammation based on 18F-FDG PET/CT: a systematic review and meta-analysis of interventional studies. J. Clin. Med. 8, 118 (2019).

    Article 
    CAS 

    Google Scholar 

  • Palaskas, N., Lopez‐Mattei, J., Durand, J. B., Iliescu, C. & Deswal, A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J. Am. Heart Assoc. 9, e013757 (2020).

    Article 

    Google Scholar 

  • Vuong, J. T. et al. Immune checkpoint therapies and atherosclerosis: mechanisms and clinical implications: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79, 577–593 (2022).

    Article 
    CAS 

    Google Scholar 

  • Suero-Abreu, G. A., Zanni, M. V. & Neilan, T. G. Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC CardioOncol. state-of-the-art review. JACC CardioOncol. 4, 598–615 (2022).

    Article 

    Google Scholar 

  • Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article 
    CAS 

    Google Scholar 

  • Calabretta, R. et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation 142, 2396–2398 (2020).

    Article 
    CAS 

    Google Scholar 

  • Poels, K. et al. Immune checkpoint inhibitor therapy aggravates t cell–driven plaque inflammation in atherosclerosis. JACC CardioOncol. 2, 599–610 (2020).

    Article 

    Google Scholar 

  • Bauer, D., Sarrett, S. M., Lewis, J. S. & Zeglis, B. M. Click chemistry: a transformative technology in nuclear medicine. Nat. Protoc. 18, 1659–1668 (2023).

    Article 
    CAS 

    Google Scholar 

  • Keinänen, O. et al. Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. Proc. Natl Acad. Sci. USA 117, 28316–28327 (2020).

    Article 

    Google Scholar 

  • Cherry, S. R. et al. Total-body imaging: transforming the role of positron emission tomography. Sci. Transl. Med. 9, eaaf6169 (2017).

    Article 

    Google Scholar 

  • Cherry, S. R. et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J. Nucl. Med. 59, 3–12 (2018).

    Article 
    CAS 

    Google Scholar 

  • van Rijsewijk, N. D. et al. Ultra-low dose infection imaging of a newborn without sedation using long axial field-of-view PET/CT. Eur. J. Nucl. Med. Mol. Imaging 50, 622–623 (2023).

    Article 

    Google Scholar 

  • Chen, W. et al. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [18F]-FDG. Eur. J. Nucl. Med. Mol. Imaging 49, 4145–4155 (2022).

    Article 
    CAS 

    Google Scholar 

  • Derlin, T., Werner, R. A., Weiberg, D., Derlin, K. & Bengel, F. M. Parametric imaging of biologic activity of atherosclerosis using dynamic whole-body positron emission tomography. JACC Cardiovasc. Imaging 15, 2098–2108 (2022).

    Article 

    Google Scholar 

  • Derlin, T. et al. Exploring vessel wall biology in vivo by ultra-sensitive total-body positron emission tomography. J. Nucl. Med. 64, 416–422 (2022).

    Article 

    Google Scholar 

  • Evans, N. R. et al. Dual-tracer positron-emission tomography for identification of culprit carotid plaques and pathophysiology in vivo. Circ. Cardiovasc. Imaging 13, e009539 (2020).

    Article 

    Google Scholar 

  • Bell, C. et al. Dual acquisition of 18F-FMISO and 18F-FDOPA. Phys. Med. Biol. 59, 3925 (2014).

    Article 

    Google Scholar 

  • Andreyev, A., Celler, A. & Dual-isotope, P. E. T. using positron-gamma emitters. Phys. Med. Biol. 56, 4539–4556 (2011).

    Article 
    CAS 

    Google Scholar 

  • Pratt, E. C. et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron–electron annihilation and prompt gamma emissions. Nat. Biomed. Eng. 7, 1028–1039 (2023).

    Article 
    CAS 

    Google Scholar 

  • Moskal, P. & Stępień, E. Ł. Perspectives on translation of positronium imaging into clinics. Front. Phys. 10, https://doi.org/10.3389/fphy.2022.969806 (2022).

  • Chen, H. M., Horn, J. Dvan & Jean, Y. C. Applications of positron annihilation spectroscopy to life science. Defect. Diffus. Forum 331, 275–293 (2012).

    Article 
    CAS 

    Google Scholar 

  • Moskal, P. & Stępień, E. Ł. Positronium as a biomarker of hypoxia. Bio-Algorithms Med-Syst. 17, 311–319 (2021).

    Article 

    Google Scholar 

  • Shibuya, K., Saito, H., Nishikido, F., Takahashi, M. & Yamaya, T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun. Phys. 3, 173 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dulski, K. et al. The J-PET detector—a tool for precision studies of ortho-positronium decays. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers Detect. Associated Equip. 1008, 165452 (2021).

    Article 
    CAS 

    Google Scholar 

  • Moskal, P. et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 7, eabh4394 (2021).

    Article 
    CAS 

    Google Scholar 

  • Föllmer, B. et al. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat. Rev. Cardiol. 21, 51–64 (2023).

    Article 

    Google Scholar 

  • IMAGINE-NAHUNET-PET scanners. International Atomic Energy Agency. https://public.tableau.com/views/IMAGINE-NAHUNET-PETScanners/PETScanners?:embed=y&:showVizHome=no&:host_url=https%3A%2F%2Fpublic.tableau.com%2F&:embed_code_version=3&:tabs=no&:toolbar=yes&:animate_transition=yes&:display_static_image=no&:display_spinner=no&:display_overlay=yes&:display_count=yes&:language=en-GB&:loadOrderID=0 (2024).

  • IAEA. Radiation in everyday life. https://www.iaea.org/Publications/Factsheets/English/radlife (2014).

  • Rominger, A. et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J. Nucl. Med. 50, 1611–1620 (2009).

    Article 

    Google Scholar 

  • Tahara, N. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 48, 1825–1831 (2006).

    Article 
    CAS 

    Google Scholar 

  • Kwiecinski, J. et al. Bypass grafting and native coronary artery disease activity. JACC Cardiovasc. Imaging 15, 875–887 (2022).

    Article 

    Google Scholar 

  • Liu, Y. et al. Molecular imaging of atherosclerotic plaque with 64Cu-labeled natriuretic peptide and PET. J. Nucl. Med. 51, 85–91 (2010).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y., Pierce, R., Luehmann, H. P., Sharp, T. L. & Welch, M. J. PET imaging of chemokine receptors in vascular injury-accelerated atherosclerosis. J. Nucl. Med. 54, 1135–1141 (2013).

    Article 
    CAS 

    Google Scholar 

  • Baba, O. et al. CXCR4-binding positron emission tomography tracers link monocyte recruitment and endothelial injury in murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 41, 822–836 (2021).

    Article 
    CAS 

    Google Scholar 

  • Luehmann, H. P. et al. PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J. Nucl. Med. 57, 1124–1129 (2016).

    Article 
    CAS 

    Google Scholar 

  • Laitinen, I. et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging 2, 331–338 (2009).

    Article 

    Google Scholar 

  • Su, H. et al. Atherosclerotic plaque uptake of a novel integrin tracer 18F-flotegatide in a mouse model of atherosclerosis. J. Nucl. Cardiol. 21, 553–562 (2014).

    Article 

    Google Scholar 

  • StÃ¥hle, M. et al. Evaluation of glucagon-like peptide-1 receptor expression in nondiabetic and diabetic atherosclerotic mice using PET tracer 68Ga-NODAGA-exendin-4. Am. J. Physiol. Endocrinol. Metab. 320, E989–E998 (2021).

    Article 

    Google Scholar 

  • Maekawa, K. et al. Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 337, 7–17 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kopecky, C. et al. Translocator protein localises to CD11b+ macrophages in atherosclerosis. Atherosclerosis 284, 153–159 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cuhlmann, S. et al. In vivo mapping of vascular inflammation using the translocator protein tracer 18F-FEDAA1106. Mol. Imaging 13, https://doi.org/10.2310/7290.2014.00014 (2014).

  • Hellberg, S. et al. 18-kDa translocator protein ligand 18F-FEMPA: biodistribution and uptake into atherosclerotic plaques in mice. J. Nucl. Cardiol. 24, 862–871 (2017).

    Article 

    Google Scholar 

  • Hellberg, S. et al. Positron emission tomography imaging of macrophages in atherosclerosis with 18F-GE-180, a radiotracer for translocator protein (TSPO). Contrast Media Mol. Imaging 2018, e9186902 (2018).

    Article 

    Google Scholar 

  • Ahmed, M. et al. Molecular imaging of inflammation in a mouse model of atherosclerosis using a zirconium-89-labeled probe. Int. J. Nanomed. 15, 6137–6152 (2020).

    Article 
    CAS 

    Google Scholar 

  • Silvola, J. M. U. et al. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Sci. Rep. 8, 9720 (2018).

    Article 

    Google Scholar 

  • Rinne, P. et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol. Imaging Biol. 18, 99–108 (2016).

    Article 
    CAS 

    Google Scholar 

  • Fu, Z. et al. P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur. J. Nucl. Med. Mol. Imaging 49, 2595–2604 (2022).

    Article 
    CAS 

    Google Scholar 

  • Palani, S. et al. Exploiting glutamine consumption in atherosclerotic lesions by positron emission tomography tracer (2S,4R)-4-18F-fluoroglutamine. Front. Immunol. 13, 821423 (2022).

    Article 
    CAS 

    Google Scholar 

  • Varasteh, Z. et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Res. 9, 5 (2019).

    Article 

    Google Scholar 

  • Kim, E. J. et al. Novel PET imaging of atherosclerosis with 68Ga-labeled NOTA-neomannosylated human serum albumin. J. Nucl. Med. 57, 1792–1797 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tahara, N. et al. 2-Deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 20, 215–219 (2014).

    Article 
    CAS 

    Google Scholar 

  • Varasteh, Z. et al. Imaging atherosclerotic plaques by targeting galectin-3 and activated macrophages using (89Zr)-DFO- galectin3-F(ab’)2 mAb. Theranostics 11, 1864–1876 (2021).

    Article 
    CAS 

    Google Scholar 

  • Keliher, E. J. et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 8, 14064 (2017).

    Article 
    CAS 

    Google Scholar 

  • Majmudar, M. D. et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ. Res. 112, 755–761 (2013).

    Article 
    CAS 

    Google Scholar 

  • Nahrendorf, M. et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117, 379–387 (2008).

    Article 
    CAS 

    Google Scholar 

  • Nahrendorf, M. et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler. Thromb. Vasc. Biol. 31, 750–757 (2011).

    Article 
    CAS 

    Google Scholar 

  • Nahrendorf, M. et al. Imaging cardiovascular and lung macrophages with the positron emission tomography sensor 64Cu-macrin in mice, rabbits, and pigs. Circ. Cardiovasc. Imaging 13, e010586 (2020).

    Article 

    Google Scholar 

  • Pérez-Medina, C. et al. In vivo PET imaging of HDL in multiple atherosclerosis models. JACC Cardiovasc. Imaging 9, 950–961 (2016).

    Article 

    Google Scholar 

  • Seo, J. W. et al. 64Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug. Chem. 25, 231–239 (2014).

    Article 
    CAS 

    Google Scholar 

  • Yang, T. et al. 18F-ASEM imaging for evaluating atherosclerotic plaques linked to α7-nicotinic acetylcholine receptor. Front. Bioeng. Biotechnol. 9, 684221 (2021).

    Article 

    Google Scholar 

  • Wang, D., Yao, Y., Wang, S., Zhang, H. & He, Z.-X. The availability of the α7-nicotinic acetylcholine receptor in early identification of vulnerable atherosclerotic plaques: a study using a novel 18F-label radioligand PET. Front. Bioeng. Biotechnol. 9, 640037 (2021).

    Article 

    Google Scholar 

  • Senders, M. L. et al. PET/MR imaging of malondialdehyde-acetaldehyde epitopes with a human antibody detects clinically relevant atherothrombosis. J. Am. Coll. Cardiol. 71, 321–335 (2018).

    Article 
    CAS 

    Google Scholar 

  • Elmaleh, D. R. et al. Detection of inflamed atherosclerotic lesions with diadenosine-5′,5′′′-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 15992–15996 (2006).

    Article 
    CAS 

    Google Scholar 

  • De Dominicis, C. et al. [18F]ZCDD083: a PFKFB3-targeted PET tracer for atherosclerotic plaque imaging. ACS Med. Chem. Lett. 11, 933–939 (2020).

    Article 

    Google Scholar 

  • Tarkin, J. M. et al. Imaging atherosclerosis. Circ. Res. 118, 750–769 (2016).

    Article 
    CAS 

    Google Scholar 

  • Stendahl, J. C., Kwan, J. M., Pucar, D. & Sadeghi, M. M. Radiotracers to address unmet clinical needs in cardiovascular imaging, part 1: technical considerations and perfusion and neuronal imaging. J. Nucl. Med. 63, 649–658 (2022).

    Article 
    CAS 

    Google Scholar 

  • Stendahl, J. C., Kwan, J. M., Pucar, D. & Sadeghi, M. M. Radiotracers to address unmet clinical needs in cardiovascular imaging, part 2: inflammation, fibrosis, thrombosis, calcification, and amyloidosis imaging. J. Nucl. Med. 63, 986–994 (2022).

    Article 
    CAS 

    Google Scholar 

  • Aboyans, V. et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 39, 763–816 (2018).

    Article 

    Google Scholar 

  • Mendieta, G. et al. Determinants of progression and regression of subclinical atherosclerosis over 6 years. J. Am. Coll. Cardiol. 82, 2069–2083 (2023).

    Article 
    CAS 

    Google Scholar 

  • Pontone, G. et al. Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging-part I. Eur. Heart J. Cardiovasc. Imaging 23, 299–314 (2022).

    Article 

    Google Scholar 

  • SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385, 2383–2391 (2015).

    Article 

    Google Scholar 

  • Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kaiser, Y. et al. Association of lipoprotein(a) with atherosclerotic plaque progression. J. Am. Coll. Cardiol. 79, 223–233 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tzolos, E. et al. Pericoronary adipose tissue attenuation, low-attenuation plaque burden, and 5-year risk of myocardial infarction. JACC Cardiovasc. Imaging 15, 1078–1088 (2022).

    Article 

    Google Scholar 

  • Yoon, Y. E. et al. Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J. Am. Coll. Cardiol. 60, 2316–2322 (2012).

    Article 

    Google Scholar 

  • Hagar, M. T. et al. Accuracy of ultrahigh-resolution photon-counting CT for detecting coronary artery disease in a high-risk population. Radiology 307, e223305 (2023).

    Article 

    Google Scholar 

  • von Zur Mühlen, C. et al. Coronary magnetic resonance imaging after routine implantation of bioresorbable vascular scaffolds allows non-invasive evaluation of vascular patency. PLoS ONE 13, e0191413 (2018).

    Article 

    Google Scholar 

  • Whittington, B., Dweck, M. R., van Beek, E. J. R., Newby, D. & Williams, M. C. PET-MRI of coronary artery disease. J. Magn. Reson. Imaging 57, 1301–1311 (2023).

    Article 

    Google Scholar 

  • Schindler, A. et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data. JACC Cardiovasc. Imaging 13, 395–406 (2020).

    Article 

    Google Scholar 

  • Mintz, G. S., Matsumura, M., Ali, Z. & Maehara, A. Clinical utility of intravascular imaging: past, present, and future. JACC Cardiovasc. Imaging 15, 1799–1820 (2022).

    Article 

    Google Scholar 

  • Dilsizian, V. et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J. Nucl. Cardiol. 23, 1187–1226 (2016).

    Article 

    Google Scholar 

  • Maddahi, J. et al. Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery disease. J. Am. Coll. Cardiol. 76, 391–401 (2020).

    Article 
    CAS 

    Google Scholar 

  • Almeida, A. G. et al. Multimodality imaging of myocardial viability: an expert consensus document from the European Association of Cardiovascular Imaging (EACVI). Eur. Heart J. Cardiovasc. Imaging 22, e97–e125 (2021).

    Article 

    Google Scholar 

  • Neumann, F.-J. et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).

    Article 

    Google Scholar 

  • Rischpler, C. et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ. Cardiovasc. Imaging 9, e004316 (2016).

    Article 

    Google Scholar 

  • Lavine, K. J. et al. CCR2 imaging in human ST-segment elevation myocardial infarction. Nat. Cardiovasc. Res. 2, 874–880 (2023).

    Article 

    Google Scholar 

  • Maier, A. et al. Multiparametric immunoimaging maps inflammatory signatures in murine myocardial infarction models. JACC Basic Transl. Sci. 2, 874–880 (2023).

    Google Scholar 

  • Werner, R. A. et al. CXCR4-targeted imaging of post-infarct myocardial tissue inflammation: prognostic value after reperfused myocardial infarction. JACC Cardiovasc. Imaging 15, 372–374 (2022).

    Article 

    Google Scholar 

  • Hess, A. et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur. Heart J. 41, 3564–3575 (2020).

    Article 
    CAS 

    Google Scholar 

  • Heckmann, M. B. et al. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ. Cardiovasc. Imaging 13, e010628 (2020).

    Article 

    Google Scholar 

  • Diekmann, J. et al. Cardiac fibroblast activation in patients early after acute myocardial infarction: integration with MR tissue characterization and subsequent functional outcome. J. Nucl. Med. 63, 1415–1423 (2022).

    Article 
    CAS 

    Google Scholar 

  • Marchesseau, S. et al. Hybrid PET/CT and PET/MRI imaging of vulnerable coronary plaque and myocardial scar tissue in acute myocardial infarction. J. Nucl. Cardiol. 25, 2001–2011 (2018).

    Article 

    Google Scholar 

  • Jenkins, W. S. A. et al. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart 103, 607–615 (2017).

    Article 
    CAS 

    Google Scholar 

  • Taylor, M. et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med. 42, 55–62 (2001).

    CAS 

    Google Scholar 

  • Maes, A. F. et al. Early assessment of regional myocardial blood flow and metabolism in thrombolysis in myocardial infarction flow grade 3 reperfused myocardial infarction using carbon-11-acetate. J. Am. Coll. Cardiol. 37, 30–36 (2001).

    Article 
    CAS 

    Google Scholar 

  • Morooka, M. et al. 11C-Methionine PET of acute myocardial infarction. J. Nucl. Med. 50, 1283–1287 (2009).

    Article 

    Google Scholar 

  • Fallavollita, J. A. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J. Am. Coll. Cardiol. 63, 141–149 (2014).

    Article 

    Google Scholar 

  • Lavine, K. J. & Liu, Y. The dynamic cardiac cellular landscape: visualization by molecular imaging. Nat. Rev. Cardiol. 19, 345–347 (2022).

    Article 

    Google Scholar 

  • [ad_2]

    Source link