[ad_1]
Stewart, S., Ekman, I., Ekman, T., Oden, A. & Rosengren, A. Population impact of heart failure and the most common forms of cancer: a study of 1 162 309 hospital cases in Sweden (1988 to 2004). Circ. Cardiovasc. Qual. Outcomes 3, 573â580 (2010).
Google ScholarÂ
Bozkurt, B. et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 27, 387â413 (2021).
Google ScholarÂ
Tsao, C. W. et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147, e93âe621 (2023).
Google ScholarÂ
Bozkurt, B. Heart failure epidemiology and outcomes statistics. J. Card. Fail. 29, 1412â1451 (2023).
Google ScholarÂ
Vasan, R. S., Enserro, D. M., Beiser, A. S. & Xanthakis, V. Lifetime risk of heart failure among participants in the Framingham study. J. Am. Coll. Cardiol. 79, 250â263 (2022).
Google ScholarÂ
Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, e263âe421 (2022).
Google ScholarÂ
Siddiqi, T. J. et al. Trends in heart failure-related mortality among older adults in the United States from 1999-2019. JACC Heart Fail. 10, 851â859 (2022).
Google ScholarÂ
Jain, V. et al. Demographic and regional trends of heart failure-related mortality in young adults in the US, 1999-2019. JAMA Cardiol. 7, 900â904 (2022).
Google ScholarÂ
Bozkurt, B. et al. Mortality, outcomes, costs, and use of medicines following a first heart failure hospitalization: EVOLUTION HF. JACC Heart Fail. 11, 1320â1332 (2023).
Google ScholarÂ
Bozkurt, B. It is time to screen for heart failure: why and how? JACC Heart Fail. 10, 598â600 (2022).
Google ScholarÂ
McDonagh, T. A. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599â3726 (2021).
Google ScholarÂ
Del Gobbo, L. C. et al. Contribution of major lifestyle risk factors for incident heart failure in older adults: the cardiovascular health study. JACC Heart Fail. 3, 520â528 (2015).
Google ScholarÂ
Hu, G., Jousilahti, P., Antikainen, R., Katzmarzyk, P. T. & Tuomilehto, J. Joint effects of physical activity, body mass index, waist circumference, and waist-to-hip ratio on the risk of heart failure. Circulation 121, 237â244 (2010).
Google ScholarÂ
Uijl, A. et al. Risk for heart failure: the opportunity for prevention with the American Heart Associationâs Lifeâs Simple 7. JACC Heart Fail. 7, 637â647 (2019).
Google ScholarÂ
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117â2128 (2015).
Google ScholarÂ
Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644â657 (2017).
Google ScholarÂ
Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347â357 (2019).
Google ScholarÂ
Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11â22 (2015).
Google ScholarÂ
Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311â322 (2016).
Google ScholarÂ
Marso, S. P. et al. Effects of liraglutide on cardiovascular outcomes in patients with diabetes with or without heart failure. J. Am. Coll. Cardiol. 75, 1128â1141 (2020).
Google ScholarÂ
Jorsal, A. et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE) â a multicentre, double-blind, randomised, placebo-controlled trial. Eur. J. Heart Fail. 19, 69â77 (2017).
Google ScholarÂ
Margulies, K. B. et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316, 500â508 (2016).
Google ScholarÂ
Hamad, F. et al. Systematic review of glucagon-like peptide one receptor agonist liraglutide of subjects with heart failure with reduced left ventricular ejection fraction. Curr. Diabetes Rev. 17, 280â292 (2021).
Google ScholarÂ
Lingvay, I. et al. Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics. Obesity 31, 111â122 (2023).
Google ScholarÂ
Novo Nordisk A/S. Semaglutide 2.4 mg reduces the risk of major adverse cardiovascular events by 20% in adults with overweight or obesity in the SELECT trial. Press release 8 August 2023. https://www.novonordisk.com/news-and-media/news-and-ir-materials/news-details.html?id=166301 (2023).
Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221â2232 (2023).
Google ScholarÂ
Ledwidge, M. et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA 310, 66â74 (2013).
Google ScholarÂ
Pop-Busui, R. et al. Heart failure: an underappreciated complication of diabetes. a consensus report of the american diabetes association. Diabetes Care 45, 1670â1690 (2022).
Google ScholarÂ
Pfeffer, M. A. et al. Angiotensin receptor-neprilysin inhibition in acute myocardial infarction. N. Engl. J. Med. 385, 1845â1855 (2021).
Google ScholarÂ
Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089â1098 (2022).
Google ScholarÂ
Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451â1461 (2021).
Google ScholarÂ
Udell, J. A. et al. Sodium glucose cotransporter-2 inhibition for acute myocardial infarction: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 2058â2068 (2022).
Google ScholarÂ
Bozkurt, B. Pre-heart failure: an important opportunity to prevent a deadly disease. JACC Heart Fail. 11, 1027â1031 (2023).
Google ScholarÂ
Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295â2306 (2019).
Google ScholarÂ
Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323â334 (2016).
Google ScholarÂ
Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436â1446 (2020).
Google ScholarÂ
Marx, N. et al. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 44, 4043â4140 (2023).
Google ScholarÂ
Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861â869 (2001).
Google ScholarÂ
Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851â860 (2001).
Google ScholarÂ
Filippatos, G. et al. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial. Circulation 145, 437â447 (2022).
Google ScholarÂ
Filippatos, G. et al. Finerenone and heart failure outcomes by kidney function/albuminuria in chronic kidney disease and diabetes. JACC Heart Fail. 10, 860â870 (2022).
Google ScholarÂ
McDonagh, T. A. et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 44, 3627â3639 (2023).
Google ScholarÂ
McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993â1004 (2014).
Google ScholarÂ
McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995â2008 (2019).
Google ScholarÂ
Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413â1424 (2020).
Google ScholarÂ
Damman, K. et al. Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail. 6, 489â498 (2018).
Google ScholarÂ
Chandra, A. et al. Effects of sacubitril/valsartan on physical and social activity limitations in patients with heart failure: a secondary analysis of the PARADIGM-HF trial. JAMA Cardiol. 3, 498â505 (2018).
Google ScholarÂ
Khariton, Y. et al. Association between sacubitril/valsartan initiation and health status outcomes in heart failure with reduced ejection fraction. JACC Heart Fail. 7, 933â941 (2019).
Google ScholarÂ
Kosiborod, M. N. et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation 141, 90â99 (2020).
Google ScholarÂ
Doughty, R. N. et al. Effects of carvedilol on left ventricular remodeling after acute myocardial infarction: the CAPRICORN Echo substudy. Circulation 109, 201â206 (2004).
Google ScholarÂ
Bozkurt, B. et al. New insights into mechanisms of action of carvedilol treatment in chronic heart failure patientsâa matter of time for contractility. J. Card. Fail. 18, 183â193 (2012).
Google ScholarÂ
Poole-Wilson, P. A. et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362, 7â13 (2003).
Google ScholarÂ
No authors listed.Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353, 2001â2007 (1999).
Google ScholarÂ
Konstam, M. A. et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation 86, 431â438 (1992).
Google ScholarÂ
Cicoira, M. et al. Long-term, dose-dependent effects of spironolactone on left ventricular function and exercise tolerance in patients with chronic heart failure. J. Am. Coll. Cardiol. 40, 304â310 (2002).
Google ScholarÂ
Januzzi, J. L. Jr et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 322, 1085â1095 (2019).
Google ScholarÂ
Khan, M. S. et al. Reverse cardiac remodeling following initiation of sacubitril/valsartan in patients with heart failure with and without diabetes. JACC Heart Fail. 9, 137â145 (2021).
Google ScholarÂ
Lee, M. M. Y. et al. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation 143, 516â525 (2021).
Google ScholarÂ
Santos-Gallego, C. G. et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 77, 243â255 (2021).
Google ScholarÂ
Tromp, J. et al. A systematic review and network meta-analysis of pharmacological treatment of heart failure with reduced ejection fraction. JACC Heart Fail. 10, 73â84 (2022).
Google ScholarÂ
Wachter, R. et al. Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge: primary results of the randomised TRANSITION study. Eur. J. Heart Fail. 21, 998â1007 (2019).
Google ScholarÂ
Velazquez, E. J. et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med. 380, 539â548 (2019).
Google ScholarÂ
Desai, A. S. et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 322, 1077â1084 (2019).
Google ScholarÂ
Bohm, M. et al. Empagliflozin improves cardiovascular and renal outcomes in heart failure irrespective of systolic blood pressure. J. Am. Coll. Cardiol. 78, 1337â1348 (2021).
Google ScholarÂ
McMurray, J. J. V. et al. Effects of dapagliflozin in patients with kidney disease, with and without heart failure. JACC Heart Fail. 9, 807â820 (2021).
Google ScholarÂ
Ferreira, J. P. et al. Interplay of mineralocorticoid receptor antagonists and empagliflozin in heart failure: EMPEROR-reduced. J. Am. Coll. Cardiol. 77, 1397â1407 (2021).
Google ScholarÂ
Bozkurt, B. et al. Neprilysin inhibitors in heart failure. JACC Basic Transl. Sci. 8, 88â105 (2022).
Google ScholarÂ
Mann, D. L. et al. Effect of treatment with sacubitril/valsartan in patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA Cardiol. 7, 17â25 (2022).
Google ScholarÂ
Vaduganathan, M. et al. Time to clinical benefit of dapagliflozin in patients with heart failure with mildly reduced or preserved ejection fraction: a prespecified secondary analysis of the DELIVER randomized clinical trial. JAMA Cardiol. 7, 1259â1263 (2022).
Google ScholarÂ
Bozkurt, B. How to initiate and uptitrate GDMT in heart failure: practical stepwise approach to optimization of GDMT. JACC Heart Fail. 10, 992â995 (2022).
Google ScholarÂ
Mebazaa, A. et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial. Lancet 400, 1938â1952 (2022).
Google ScholarÂ
Voors, A. A. et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat. Med. 28, 568â574 (2022).
Google ScholarÂ
Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117â128 (2021).
Google ScholarÂ
Bozkurt, B. What to and not to monitor for uptitration of GDMT in patients with heart failure: the case for patient self-uptitration of GDMT. JACC Heart Fail. 10, 881â884 (2022).
Google ScholarÂ
Bhatt, A. S., DeVore, A. D., DeWald, T. A., Swedberg, K. & Mentz, R. J. Achieving a maximally tolerated beta-blocker dose in heart failure patients: is there room for improvement? J. Am. Coll. Cardiol. 69, 2542â2550 (2017).
Google ScholarÂ
Packer, M. et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation 100, 2312â2318 (1999).
Google ScholarÂ
Mohebi, R. et al. Dose-response to sacubitril/valsartan in patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 80, 1529â1541 (2022).
Google ScholarÂ
Rohde, L. E. et al. Sacubitril/valsartan and sudden cardiac death according to implantable cardioverter-defibrillator use and heart failure cause: a PARADIGM-HF analysis. JACC Heart Fail. 8, 844â855 (2020).
Google ScholarÂ
Taylor, A. L. et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med. 351, 2049â2057 (2004).
Google ScholarÂ
Armstrong, P. W. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 382, 1883â1893 (2020).
Google ScholarÂ
Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436â2448 (2009).
Google ScholarÂ
Ponikowski, P. et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 36, 657â668 (2015).
Google ScholarÂ
Ponikowski, P. et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396, 1895â1904 (2020).
Google ScholarÂ
Mentz, R. J. et al. Ferric carboxymaltose in heart failure with iron deficiency. N. Engl. J. Med. 389, 975â986 (2023).
Google ScholarÂ
Ponikowski, P. et al. Efficacy of ferric carboxymaltose in heart failure with iron deficiency: an individual patient data meta-analysis. Eur. Heart J. 44, 5077â5091 (2023).
Google ScholarÂ
Salah, H. M., Fudim, M. & Burkhoff, D. Device interventions for heart failure. JACC Heart Fail. 11, 1039â1054 (2023).
Google ScholarÂ
Hahn, R. T., Brener, M. I., Cox, Z. L., Pinney, S. & Lindenfeld, J. Tricuspid regurgitation management for heart failure. JACC Heart Fail. 11, 1084â1102 (2023).
Google ScholarÂ
Okumus, N., Abraham, S., Puri, R. & Tang, W. H. W. Aortic valve disease, transcatheter aortic valve replacement, and the heart failure patient: a state-of-the-art review. JACC Heart Fail. 11, 1070â1083 (2023).
Google ScholarÂ
Lander, M. M. et al. Mitral interventions in heart failure. JACC Heart Fail. 11, 1055â1069 (2023).
Google ScholarÂ
Bozkurt, B. et al. Cardiac rehabilitation for patients with heart failure: JACC expert panel. J. Am. Coll. Cardiol. 77, 1454â1469 (2021).
Google ScholarÂ
Abraham, W. T. et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur. Heart J. 42, 700â710 (2021).
Google ScholarÂ
Greene, S. J. et al. Worsening heart failure: nomenclature, epidemiology, and future directions: JACC review topic of the week. J. Am. Coll. Cardiol. 81, 413â424 (2023).
Google ScholarÂ
Bozkurt, B. Nonresponse to heart failure therapy: an important trajectory. JACC Heart Fail. 11, 729â732 (2023).
Google ScholarÂ
Morris, A. A. et al. Guidance for timely and appropriate referral of patients with advanced heart failure: a scientific statement from the American Heart Association. Circulation 144, e238âe250 (2021).
Google ScholarÂ
Bozkurt, B. Treatment of advanced (stage D) heart failure in the new era. JACC Heart Fail. 11, 258â260 (2023).
Google ScholarÂ
Solomon, S. D. et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med. 381, 1609â1620 (2019).
Google ScholarÂ
Pitt, B. et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370, 1383â1392 (2014).
Google ScholarÂ
Yusuf, S. et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362, 777â781 (2003).
Google ScholarÂ
Solomon, S. D. et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur. Heart J. 37, 455â462 (2016).
Google ScholarÂ
Lund, L. H. et al. Heart failure with mid-range ejection fraction in CHARM: characteristics, outcomes and effect of candesartan across the entire ejection fraction spectrum. Eur. J. Heart Fail. 20, 1230â1239 (2018).
Google ScholarÂ
Solomon, S. D. et al. Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation 141, 352â361 (2020).
Google ScholarÂ
Cleland, J. G. F. et al. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur. Heart J. 39, 26â35 (2018).
Google ScholarÂ
Desai, A. S., Lam, C. S. P., McMurray, J. J. V. & Redfield, M. M. How to manage heart failure with preserved ejection fraction: practical guidance for clinicians. JACC Heart Fail. 11, 619â636 (2023).
Google ScholarÂ
Halliday, B. P. et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393, 61â73 (2019).
Google ScholarÂ
Kitzman, D. W. et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315, 36â46 (2016).
Google ScholarÂ
Shimada, Y. J., Tsugawa, Y., Brown, D. F. M. & Hasegawa, K. Bariatric surgery and emergency department visits and hospitalizations for heart failure exacerbation: population-based, self-controlled series. J. Am. Coll. Cardiol. 67, 895â903 (2016).
Google ScholarÂ
Doumouras, A. G. et al. Bariatric surgery and cardiovascular outcomes in patients with obesity and cardiovascular disease:: a population-based retrospective cohort study. Circulation 143, 1468â1480 (2021).
Google ScholarÂ
Kosiborod, M. N. et al. Design and baseline characteristics of STEP-HFpEF program evaluating semaglutide in patients with obesity HFpEF phenotype. JACC Heart Fail. 11, 1000â1010 (2023).
Google ScholarÂ
Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069â1084 (2023).
Google ScholarÂ
Metra, M. et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ. Heart Fail. 5, 54â62 (2012).
Google ScholarÂ
Logeart, D. et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 43, 635â641 (2004).
Google ScholarÂ
Mullens, W. et al. Acetazolamide in acute decompensated heart failure with volume overload. N. Engl. J. Med. 387, 1185â1195 (2022).
Google ScholarÂ
Kittleson, M. M. et al. ACC expert consensus decision pathway on comprehensive multidisciplinary care for the patient with cardiac amyloidosis: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 81, 1076â1126 (2023).
Google ScholarÂ
Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007â1016 (2018).
Google ScholarÂ
Khan, M. S. et al. Albuminuria and heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 81, 270â282 (2023).
Google ScholarÂ
Kontorovich, A. R. Approaches to genetic screening in cardiomyopathies: practical guidance for clinicians. JACC Heart Fail. 11, 133â142 (2023).
Google ScholarÂ
[ad_2]
Source link