[ad_1]
Mitrov-Winkelmolen, L. et al. The effect of Roux-en-Y gastric bypass surgery in morbidly obese patients on pharmacokinetics of (acetyl) salicylic acid and omeprazole: the ERY-PAO study. Obes. Surg. 26, 2051â2058 (2016).
Google ScholarÂ
Miedziaszczyk, M., Ciabach, P. & SzaÅek, E. The effects of bariatric surgery and gastrectomy on the absorption of drugs, vitamins, and mineral elements. Pharmaceutics 13, 2111 (2021).
Google ScholarÂ
Valgimigli, M. et al. Trade-off of myocardial infarction vs. bleeding types on mortality after acute coronary syndrome: lessons from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) randomized trial. Eur. Heart J. 38, 804â810 (2017).
Google ScholarÂ
Abraham, N. S. et al. American College of Gastroenterology-Canadian Association of Gastroenterology Clinical Practice Guideline: management of anticoagulants and antiplatelets during acute gastrointestinal bleeding and the periendoscopic period. J. Can. Assoc. Gastroenterol. 5, 100â101 (2022).
Google ScholarÂ
Mehran, R. et al. Associations of major bleeding and myocardial infarction with the incidence and timing of mortality in patients presenting with non-ST-elevation acute coronary syndromes: a risk model from the ACUITY trial. Eur. Heart J. 30, 1457â1466 (2009).
Google ScholarÂ
Yasuda, H. et al. Treatment and prevention of gastrointestinal bleeding in patients receiving antiplatelet therapy. World J. Crit. Care Med. 4, 40â46 (2015).
Google ScholarÂ
Abrignani, M. G. et al. Gastroprotection in patients on antiplatelet and/or anticoagulant therapy: a position paper of National Association of Hospital Cardiologists (ANMCO) and the Italian Association of Hospital Gastroenterologists and Endoscopists (AIGO). Eur. J. Intern. Med. 85, 1â13 (2021).
Google ScholarÂ
Kido, K. & Scalese, M. J. Management of oral anticoagulation therapy after gastrointestinal bleeding: whether to, when to, and how to restart an anticoagulation therapy. Ann. Pharmacother. 51, 1000â1007 (2017).
Google ScholarÂ
Scott, M. J., Veitch, A. & Thachil, J. Reintroduction of antiâthrombotic therapy after a gastrointestinal haemorrhage: if and when? Br. J. Haematol. 177, 185â197 (2017).
Google ScholarÂ
Sengupta, N. et al. Management of patients with acute lower gastrointestinal bleeding: an updated ACG guideline. Am. J. Gastroenterol. 118, 208â231 (2023).
Google ScholarÂ
Abraham, N. S. et al. American College of Gastroenterology-Canadian Association of Gastroenterology Clinical Practice Guideline: management of anticoagulants and antiplatelets during acute gastrointestinal bleeding and the periendoscopic period. Am. J. Gastroenterol. 117, 542â558 (2022).
Google ScholarÂ
Tomaselli, G. F. et al. 2020 ACC expert consensus decision pathway on management of bleeding in patients on oral anticoagulants: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 76, 594â622 (2020).
Google ScholarÂ
European Association for the Study of the Liver EASL Clinical Practice Guidelines on prevention and management of bleeding and thrombosis in patients with cirrhosis. J. Hepatol. 76, 1151â1184 (2022).
Google ScholarÂ
Sandercock, P. A., Counsell, C., Gubitz, G. J. & Tseng, M. C. Antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst. Rev. 1, CD000029 (2022).
Zafar, M. U., Farkouh, M. E., Fuster, V. & Chesebro, J. H. Crushed clopidogrel administered via nasogastric tube has faster and greater absorption than oral whole tablets. J. Interv. Cardiol. 22, 385â389 (2009).
Google ScholarÂ
Parodi, G. et al. Ticagrelor crushed tablets administration in STEMI patients: the MOJITO study. J. Am. Coll. Cardiol. 65, 511â512 (2015).
Google ScholarÂ
Rollini, F. et al. Crushed prasugrel tablets in patients with STEMI undergoing primary percutaneous coronary intervention: the CRUSH Study. J. Am. Coll. Cardiol. 67, 1994â2004 (2016).
Google ScholarÂ
Vlachojannis, G. J. et al. Effect of prehospital crushed prasugrel tablets in patients with ST-segment-elevation myocardial infarction planned for primary percutaneous coronary intervention: the randomized COMPARE CRUSH trial. Circulation 142, 2316â2328 (2020).
Google ScholarÂ
Gargiulo, G. et `al. Cangrelor, tirofiban, and chewed or standard prasugrel regimens in patients with ST-segment-elevation myocardial infarction: primary results of the FABOLUS-FASTER trial. Circulation 142, 441â454 (2020).
Google ScholarÂ
Angiolillo, D. J. et al. Bridging antiplatelet therapy with cangrelor in patients undergoing cardiac surgery. JAMA 307, 265â274 (2012).
Google ScholarÂ
Vaduganathan, M. et al. Cangrelor with and without glycoprotein IIb/IIIa inhibitors in patients undergoing percutaneous coronary intervention. J. Am. Coll. Cardiol. 69, 176â185 (2017).
Google ScholarÂ
Ferreira Silva, R. & Rita Carvalho Garbi Novaes, M. Interactions between drugs and drug-nutrient in enteral nutrition: a review based on evidences. Nutr. Hosp. 30, 514â518 (2014).
Google ScholarÂ
Klang, M., Graham, D. & McLymont, V. Warfarin bioavailability with feeding tubes and enteral formula. JPEN J. Parenter. Enter. Nutr. 34, 300â304 (2010).
Google ScholarÂ
Hankey, G. J. & Eikelboom, J. W. Dabigatran etexilate: a new oral thrombin inhibitor. Circulation 123, 1436â1450 (2011).
Google ScholarÂ
Peterson, J. J. & Hoehns, J. D. Administration of direct oral anticoagulants through enteral feeding tubes. J. Pharm. Technol. 32, 196â200 (2016).
Google ScholarÂ
Duchin, K. et al. An open-label crossover study of the pharmacokinetics of the 60-mg edoxaban tablet crushed and administered either by a nasogastric tube or in apple puree in healthy adults. Clin. Pharmacokinet. 57, 221â228 (2018).
Google ScholarÂ
Moore, K. T. et al. Rivaroxaban crushed tablet suspension characteristics and relative bioavailability in healthy adults when administered orally or via nasogastric tube. Clin. Pharmacol. Drug. Dev. 3, 321â327 (2014).
Google ScholarÂ
Hobl, E. L. et al. Morphine decreases clopidogrel concentrations and effects: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 63, 630â635 (2014).
Google ScholarÂ
McEvoy, J. W. et al. Effect of intravenous fentanyl on ticagrelor absorption and platelet inhibition among patients undergoing percutaneous coronary intervention: the PACIFY randomized clinical trial (Platelet Aggregation With Ticagrelor Inhibition and Fentanyl). Circulation 137, 307â309 (2018).
Google ScholarÂ
Iglesias, J. F. et al. Effects of fentanyl versus morphine on ticagrelor-induced platelet inhibition in patients with ST-segment elevation myocardial infarction: the PERSEUS randomized trial. Circulation 142, 2479â2481 (2020).
Google ScholarÂ
Tavenier, A. H. et al. Impact of opioids on P2Y12 receptor inhibition in patients with ST-elevation myocardial infarction who are pre-treated with crushed ticagrelor: Opioids aNd crushed Ticagrelor In Myocardial infarction Evaluation (ON-TIME 3) trial. Eur. Heart J. Cardiovasc. Pharmacother. 8, 4â12 (2022).
Google ScholarÂ
Fernando, H. et al. Effects of lignocaine vs. opioids on antiplatelet activity of ticagrelor: the LOCAL trial. Eur. Heart J. 42, 4025â4036 (2021).
Google ScholarÂ
Fernando, H. et al. Lidocine versus opioids in myocardial infarction: the AVOID-2 randomized controlled trial. Eur. Heart J. Acute Cardiovasc. Care 12, 2â11 (2023).
Google ScholarÂ
Holm, M. et al. The MOVEMENT trial. J. Am. Heart Assoc. 8, e010152 (2019).
Google ScholarÂ
Franchi, F. et al. Effects of methylnaltrexone on ticagrelor-induced antiplatelet effects in coronary artery disease patients treated with morphine. JACC Cardiovasc. Interv. 12, 1538â1549 (2019).
Google ScholarÂ
Niezgoda, P. et al. Oral naloxone to overcome the morphine effect in acute coronary syndrome patients treated with ticagrelor â NARCOTIC trial. Cardiol. J. 29, 432â440 (2022).
Google ScholarÂ
Sikora, J. et al. Metoclopramide administration as a strategy to overcome morpHine-ticagrelor interaction in patients with unstable angina pectorIs â the METAMORPHOSIS trial. Thromb. Haemost. 118, 2126â2133 (2018).
Google ScholarÂ
Saad, M. et al. Impact of morphine treatment with and without metoclopramide coadministration on ticagrelor-induced platelet inhibition in acute myocardial infarction: the randomized MonAMI trial. Circulation 141, 1354â1356 (2020).
Google ScholarÂ
Siller-Matula, J. M. et al. Abciximab as a bridging strategy to overcome morphine-prasugrel interaction in STEMI patients. Br. J. Clin. Pharmacol. 82, 1343â1350 (2016).
Google ScholarÂ
Zwart, B. et al. Use of glycoprotein IIb/IIIa antagonists to prevent stent thrombosis in morphine-treated patients with ST-elevation myocardial infarction. Platelets 31, 174â178 (2020).
Google ScholarÂ
Wong, G. C. et al. 2019 Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology guidelines on the acute management of ST-elevation myocardial infarction: focused update on regionalization and reperfusion. Can. J. Cardiol. 35, 107â132 (2019).
Google ScholarÂ
Byrne, R. A. et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 44, 3720â3826 (2023).
Google ScholarÂ
Droppa, M., Karathanos, A., Gawaz, M. & Geisler, T. Individualised dual antiplatelet therapy in a patient with short bowel syndrome after acute myocardial infarction with coronary artery stenting. BMJ Case Rep. 2015, bcr2014205227 (2015).
Google ScholarÂ
Koltai, K., Kesmarky, G., Feher, G., Tibold, A. & Toth, K. Platelet aggregometry testing: molecular mechanisms, techniques and clinical implications. Int. J. Mol. Sci. 18, 1803 (2017).
Google ScholarÂ
Yan, H. et al. The relationship among intestinal bacteria, vitamin K and response of vitamin K antagonist: a review of evidence and potential mechanism. Front. Med. 9, 829304 (2022).
Google ScholarÂ
Sobieraj, D. M., Wang, F. & Kirton, O. C. Warfarin resistance after total gastrectomy and Roux-en-Y esophagojejunostomy. Pharmacotherapy 28, 1537â1541 (2008).
Google ScholarÂ
Strong, A. T. et al. Adjustments to warfarin dosing after gastric bypass and sleeve gastrectomy. Surg. Obes. Relat. Dis. 14, 700â706 (2018).
Google ScholarÂ
Grymonprez, M. et al. Impact of P-glycoprotein and CYP3A4-interacting drugs on clinical outcomes in patients with atrial fibrillation using non-vitamin K antagonist oral anticoagulants: a nationwide cohort study. Eur. Heart J. Cardiovasc. Pharmacother. 9, 722â730 (2023).
Google ScholarÂ
Cheung, Y. W. et al. Pharmacokinetics of dabigatran etexilate and rivaroxaban in patients with short bowel syndrome requiring parenteral nutrition: the PDER PAN study. Thromb. Res. 160, 76â82 (2017).
Google ScholarÂ
Grainger, B. et al. Evidence of impaired dabigatran absorption following laparoscopic Roux-en-Y gastric bypass surgery: the Auckland regional experience (2011-2018). Br. J. Haematol. 191, e67âe69 (2020).
Google ScholarÂ
Christensen, L. D., Vinter-Jensen, L., Rasmussen, H. H., Kristensen, S. R. & Larsen, T. B. Rivaroxaban as anticoagulant therapy in short bowel syndrome. Report of three cases. Thromb. Res. 135, 568â570 (2015).
Google ScholarÂ
Kröll, D. et al. Pharmacokinetics and pharmacodynamics of single doses of rivaroxaban in obese patients prior to and after bariatric surgery. Br. J. Clin. Pharmacol. 83, 1466â1475 (2017).
Google ScholarÂ
Steele, K. E. et al. The APB study: apixaban pharmacokinetics in bariatric patients before to 1 year after vertical sleeve gastrectomy or Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 18, 594â603 (2022).
Google ScholarÂ
Hakeam, H. A. & Al-Sanea, N. Effect of major gastrointestinal tract surgery on the absorption and efficacy of direct acting oral anticoagulants (DOACs). J. Thromb. Thrombolysis 43, 343â351 (2017).
Google ScholarÂ
Colquitt, J. L., Pickett, K., Loveman, E. & Frampton, G. K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 2014, CD003641 (2014).
Google ScholarÂ
Angrisani, L. et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes. Surg. 27, 2279â2289 (2017).
Google ScholarÂ
Kingma, J. S. et al. Oral drug dosing following bariatric surgery: general concepts and specific dosing advice. Br. J. Clin. Pharmacol. 87, 4560â4576 (2021).
Google ScholarÂ
Azran, C. et al. Oral drug therapy following bariatric surgery: an overview of fundamentals, literature and clinical recommendations. Obes. Rev. 17, 1050â1066 (2016).
Google ScholarÂ
Rocca, B. et al. Antithrombotic therapy and body mass: an expert position paper of the ESC Working Group on Thrombosis. Eur. Heart J. 39, 1672â1686f (2018).
Google ScholarÂ
Norgard, N. B., Monte, S. V., Fernandez, S. F. & Ma, Q. Aspirin responsiveness changes in obese patients following bariatric surgery. Cardiovasc. Ther. 35, e12268 (2017).
Google ScholarÂ
Caruana, J. A., McCabe, M. N., Smith, A. D., Panemanglore, V. P. & Sette Camara, D. Risk of massive upper gastrointestinal bleeding in gastric bypass patients taking clopidogrel. Surg. Obes. Relat. Dis. 3, 443â445 (2007).
Google ScholarÂ
Patel, P. H., Ho, T. & Upadhyay, S. M. A systematic review of warfarin use in post-bariatric surgery patients: cases compiled from a literature review. Ann. Pharmacother. 57, 193â197 (2023).
Google ScholarÂ
Rottenstreich, A., Barkai, A., Arad, A., Raccah, B. H. & Kalish, Y. The effect of bariatric surgery on direct-acting oral anticoagulant drug levels. Thrombosis Res. 163, 190â195 (2018).
Google ScholarÂ
Leong, R., Chu, D. K., Crowther, M. A. & Mithoowani, S. J. Direct oral anticoagulants after bariatric surgery â what is the evidence? Thromb. Haemost. 20, 1988â2000 (2022).
Google ScholarÂ
Kröll, D. et al. Efficacy and safety of rivaroxaban for postoperative thromboprophylaxis in patients after bariatric surgery. JAMA Netw. Open. 6, e2315241 (2023).
Google ScholarÂ
Martin, K. A. et al. Use of direct oral anticoagulants in patients with obesity for treatment and prevention of venous thromboembolism: updated communication from the ISTH SSC Subcommittee on Control of Anticoagulation. J. Thromb. Haemost. 19, 1874â1882 (2021).
Google ScholarÂ
Decousus, H. et al. Factors at admission associated with bleeding risk in medical patients: findings from the IMPROVE investigators. Chest 139, 69â79 (2011).
Google ScholarÂ
Sostres, C., Gargallo, C. J. & Lanas, A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res. Ther. 15, S3 (2013).
Google ScholarÂ
Masclee, G. M. et al. Risk of upper gastrointestinal bleeding from different drug combinations. Gastroenterology 147, 784â792.e9 (2014).
Google ScholarÂ
Rostom, A. et al. Gastrointestinal safety of cyclooxygenase-2 inhibitors: a Cochrane Collaboration systematic review. Clin. Gastroenterol. Hepatol. 5, 818â828 (2007).
Google ScholarÂ
Ray, W. A. et al. Association of oral anticoagulants and proton pump inhibitor cotherapy with hospitalization for upper gastrointestinal tract bleeding. JAMA 320, 2221â2230 (2018).
Google ScholarÂ
Lanas, A., Wu, P., Medin, J. & Mills, E. J. Low doses of acetylsalicylic acid increase risk of gastrointestinal bleeding in a meta-analysis. Clin. Gastroenterol. Hepatol. 9, 762â768.e6 (2011).
Google ScholarÂ
Lanza, F. L., Royer, G. L. Jr. & Nelson, R. S. Endoscopic evaluation of the effects of aspirin, buffered aspirin, and enteric-coated aspirin on gastric and duodenal mucosa. N. Engl. J. Med. 303, 136â138 (1980).
Google ScholarÂ
Petroski, D. Endoscopic comparison of three aspirin preparations and placebo. Clin. Ther. 15, 314â320 (1993).
Google ScholarÂ
Clerici, B. & Cattaneo, M. Pharmacological efficacy and gastrointestinal safety of different aspirin formulations for cardiovascular prevention: a narrative review. J. Cardiovasc. Dev. Dis. 10, 137 (2023).
Google ScholarÂ
Sleem, A. et al. Effectiveness and safety of enteric-coated vs uncoated aspirin in patients with cardiovascular disease: a secondary analysis of the ADAPTABLE randomized clinical trial. JAMA Cardiol. 8, 1061â1069 (2023).
Google ScholarÂ
Mehta, S. R. et al. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N. Engl. J. Med. 363, 930â942 (2010).
Google ScholarÂ
Carnicelli, A. P. et al. Direct oral anticoagulants versus warfarin in patients with atrial fibrillation: patient-level network meta-analyses of randomized clinical trials with interaction testing by age and sex. Circulation 145, 242â255 (2022).
Google ScholarÂ
Xu, Y. & Siegal, D. M. Anticoagulant-associated gastrointestinal bleeding: framework for decisions about whether, when and how to resume anticoagulants. J. Thromb. Haemost. 19, 2383â2393 (2021).
Google ScholarÂ
Costa, F. et al. Antithrombotic therapy according to baseline bleeding risk in patients with atrial fibrillation undergoing percutaneous coronary intervention: applying the PRECISE-DAPT score in RE-DUAL PCI. Eur. Heart J. Cardiovasc. Pharmacother. 8, 216â226 (2022).
Google ScholarÂ
Urban, P. et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk. Eur. Heart J. 40, 2632â2653 (2019).
Google ScholarÂ
Lv, M. et al. A new score for predicting acute gastrointestinal bleeding in patients administered oral antiplatelet drugs. Front. Pharmacol. 11, 571605 (2020).
Google ScholarÂ
Bikdeli, B. et al. Clinical characteristics, time course, and outcomes of major bleeding according to bleeding site in patients with venous thromboembolism. Thromb. Res. 211, 10â18 (2022).
Google ScholarÂ
Catella, J. et al. Major gastrointestinal bleeding in patients receiving anticoagulant therapy for venous thromboembolism. Thromb. Res. 214, 29â36 (2022).
Google ScholarÂ
Mo, C. et al. Proton pump inhibitors in prevention of low-dose aspirin-associated upper gastrointestinal injuries. World J. Gastroenterol. 21, 5382â5392 (2015).
Google ScholarÂ
Bhatt, D. L. et al. Clopidogrel with or without omeprazole in coronary artery disease. N. Engl. J. Med. 363, 1909â1917 (2010).
Google ScholarÂ
Ng, F. H. et al. Famotidine is inferior to pantoprazole in preventing recurrence of aspirin-related peptic ulcers or erosions. Gastroenterology 138, 82â88 (2010).
Google ScholarÂ
Ng, F. H. et al. Esomeprazole compared with famotidine in the prevention of upper gastrointestinal bleeding in patients with acute coronary syndrome or myocardial infarction. Am. J. Gastroenterol. 107, 389â396 (2012).
Google ScholarÂ
Chan, F. K. et al. Similar efficacy of proton-pump inhibitors vs H2-receptor antagonists in reducing risk of upper gastrointestinal bleeding or ulcers in high-risk users of low-dose aspirin. Gastroenterol 152, 105â110.e1 (2017).
Google ScholarÂ
Levine, G. N. et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines: an update of the ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of st-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation 134, e123âe155 (2016).
Google ScholarÂ
Virani, S. S. et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 148, e9âe119 (2023).
Google ScholarÂ
Moayyedi, P. et al. Pantoprazole to prevent gastroduodenal events in patients receiving rivaroxaban and/or aspirin in a randomized, double-blind, placebo-controlled trial. Gastroenterology 157, 403â412.e5 (2019).
Google ScholarÂ
Weisz, G. et al. Proton pump inhibitors, platelet reactivity, and cardiovascular outcomes after drug-eluting stents in clopidogrel-treated patients: the ADAPT-DES study. Circ. Cardiovasc. Interv. 8, e001952 (2015).
Google ScholarÂ
Dunn, S. P. et al. Impact of proton pump inhibitor therapy on the efficacy of clopidogrel in the CAPRIE and CREDO trials. J. Am. Heart Assoc. 2, e004564 (2013).
Google ScholarÂ
Charlot, M. et al. Proton-pump inhibitors are associated with increased cardiovascular risk independent of clopidogrel use: a nationwide cohort study. Ann. Intern. Med. 153, 378â386 (2010).
Google ScholarÂ
Demcsák, A. et al. PPIs are not responsible for elevating cardiovascular risk in patients on clopidogrel â a systematic review and meta-analysis. Front. Physiol. 9, 1550 (2018).
Google ScholarÂ
Marx, N. et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 44, 4043â4140 (2023).
Google ScholarÂ
Agewall, S. et al. Expert position paper on the use of proton pump inhibitors in patients with cardiovascular disease and antithrombotic therapy. Eur. Heart J. 34, 1708â1713 (2013).
Google ScholarÂ
Reddy, V. Y. et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: a randomized clinical trial. JAMA 312, 1988â1998 (2014).
Google ScholarÂ
Holmes, D. R. Jr. et al. Prospective randomized evaluation of the Watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J. Am. Coll. Cardiol. 64, 1â12 (2014).
Google ScholarÂ
Osmancik, P. et al. Left atrial appendage closure versus direct oral anticoagulants in high-risk patients with atrial fibrillation. J. Am. Coll. Cardiol. 75, 3122â3135 (2020).
Google ScholarÂ
Caliskan, E. et al. Interventional and surgical occlusion of the left atrial appendage. Nat. Rev. Cardiol. 14, 727â743 (2017).
Google ScholarÂ
Costa, R. A. et al. Polymer-free biolimus A9-coated stents in the treatment of de novo coronary lesions: 4- and 12-month angiographic follow-up and final 5-year clinical outcomes of the prospective, multicenter biofreedom FIM clinical trial. JACC Cardiovasc. Interv. 9, 51â64 (2016).
Google ScholarÂ
Hamon, M. et al. Clinical and angiographic experience with a third-generation drug-eluting Orsiro stent in the treatment of single de novo coronary artery lesions (BIOFLOW-I): a prospective, first-in-man study. EuroIntervention 8, 1006â1011 (2013).
Google ScholarÂ
Bikdeli, B. et al. Inferior vena cava filters to prevent pulmonary embolism: systematic review and meta-analysis. J. Am. Coll. Cardiol. 70, 1587â1597 (2017).
Google ScholarÂ
Bikdeli B., et al. Developmental or procedural vena cava interruption and venous thromboembolism: a review. Semin. Thromb. Hemost. https://doi.org/10.1055/s-0043-1777991 (2024).
De Caterina, R. et al. Great debate: triple antithrombotic therapy in patients with atrial fibrillation undergoing coronary stenting should be limited to 1 week. Eur. Heart J. 43, 3512â3527 (2022).
Google ScholarÂ
Gargiulo, G. et al. Safety and efficacy outcomes of double vs. triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: a systematic review and meta-analysis of non-vitamin K antagonist oral anticoagulant-based randomized clinical trials. Eur. Heart J. 40, 3757â3767 (2019).
Google ScholarÂ
Alexander, J. H. et al. Risk/benefit tradeoff of antithrombotic therapy in patients with atrial fibrillation early and late after an acute coronary syndrome or percutaneous coronary intervention: insights from AUGUSTUS. Circulation 141, 1618â1627 (2020).
Google ScholarÂ
Vranckx, P. et al. Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): a randomised, open-label, phase 3b trial. Lancet 394, 1335â1343 (2019).
Google ScholarÂ
Lopes, R. D. et al. Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation. N. Engl. J. Med. 380, 1509â1524 (2019).
Google ScholarÂ
Gibson, C. M. et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N. Engl. J. Med. 375, 2423â2434 (2016).
Google ScholarÂ
Cannon, C. P. et al. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N. Engl. J. Med. 377, 1513â1524 (2017).
Google ScholarÂ
Kumbhani, D. J. et al. 2020 ACC expert consensus decision pathway for anticoagulant and antiplatelet therapy in patients with atrial fibrillation or venous thromboembolism undergoing percutaneous coronary intervention or with atherosclerotic cardiovascular disease: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 77, 629â658 (2021).
Google ScholarÂ
Angiolillo, D. J. et al. Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention: a North American Perspective: 2021 update. Circulation 143, 583â596 (2021).
Google ScholarÂ
Schaefer, J. K. et al. Adverse events associated with the addition of aspirin to direct oral anticoagulant therapy without a clear indication. JAMA Intern. Med. 181, 817â824 (2021).
Google ScholarÂ
Schaefer, J. K. et al. Association of adding aspirin to warfarin therapy without an apparent indication with bleeding and other adverse events. JAMA Intern. Med. 179, 533â541 (2019).
Google ScholarÂ
Akao, M. et al. Rivaroxaban monotherapy versus combination therapy according to patient risk of stroke and bleeding in atrial fibrillation and stable coronary disease: AFIRE trial subanalysis. Am. Heart J. 236, 59â68 (2021).
Google ScholarÂ
Gragnano, F. et al. P2Y12 inhibitor or aspirin monotherapy for secondary prevention of coronary events. J. Am. Coll. Cardiol. 82, 89â105 (2023).
Google ScholarÂ
Patti, G. et al. Outcomes of anticoagulated patients with atrial fibrillation treated with or without antiplatelet therapy â a pooled analysis from the PREFER in AF and PREFER in AF PROLONGATON registries. Int. J. Cardiol. 270, 160â166 (2018).
Google ScholarÂ
Yasuda, S. et al. Antithrombotic therapy for atrial fibrillation with stable coronary disease. N. Engl. J. Med. 381, 1103â1113 (2019).
Google ScholarÂ
US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05627375 (2023).
CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 348, 1329â1339 (1996).
Google ScholarÂ
Bhatt, D. L., Hirsch, A. T., Ringleb, P. A., Hacke, W. & Topol, E. J. Reduction in the need for hospitalization for recurrent ischemic events and bleeding with clopidogrel instead of aspirin. CAPRIE investigators. Am. Heart J. 140, 67â73 (2000).
Google ScholarÂ
McQuaid, K. R. & Laine, L. Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am. J. Med. 119, 624â638 (2006).
Google ScholarÂ
Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045â1057 (2009).
Google ScholarÂ
Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001â2015 (2007).
Google ScholarÂ
Hiatt, W. R. et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N. Engl. J. Med. 376, 32â40 (2017).
Google ScholarÂ
Hochholzer, W. et al. Predictors of bleeding and time dependence of association of bleeding with mortality: insights from the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial infarction 38 (TRITON-TIMI 38). Circulation 123, 2681â2689 (2011).
Google ScholarÂ
Guo, C. G. et al. Systematic review with meta-analysis: the risk of gastrointestinal bleeding in patients taking third-generation P2Y12 inhibitors compared with clopidogrel. Aliment. Pharmacol. Ther. 49, 7â19 (2019).
Google ScholarÂ
Koo, B. K. et al. Aspirin versus clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention (HOST-EXAM): an investigator-initiated, prospective, randomised, open-label, multicentre trial. Lancet 397, 2487â2496 (2021).
Google ScholarÂ
Nguyen, T. A., Diodati, J. G. & Pharand, C. Resistance to clopidogrel: a review of the evidence. J. Am. Coll. Cardiol. 45, 1157â1164 (2005).
Google ScholarÂ
Giugliano, R. P. et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 369, 2093â2104 (2013).
Google ScholarÂ
Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883â891 (2011).
Google ScholarÂ
Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139â1151 (2009).
Google ScholarÂ
Schulman, S. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 361, 2342â2352 (2009).
Google ScholarÂ
Schulman, S. et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation 129, 764â772 (2014).
Google ScholarÂ
Agnelli, G. et al. Oral apixaban for the treatment of acute venous thromboembolism. N. Engl. J. Med. 369, 799â808 (2013).
Google ScholarÂ
Young, A. M. et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J. Clin. Oncol. 36, 2017â2023 (2018).
Google ScholarÂ
Raskob, G. E. et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N. Engl. J. Med. 378, 615â624 (2018).
Google ScholarÂ
Agnelli, G. et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N. Engl. J. Med. 382, 1599â1607 (2020).
Google ScholarÂ
Halvorsen, S. et al. Management of antithrombotic therapy after bleeding in patients with coronary artery disease and/or atrial fibrillation: expert consensus paper of the European Society of Cardiology Working Group on Thrombosis. Eur. Heart J. 38, 1455â1462 (2017).
Google ScholarÂ
Gralnek, I. M. et al. Diagnosis and management of nonvariceal upper gastrointestinal hemorrhage: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 47, a1âa46 (2015).
Google ScholarÂ
Ray, W. A. et al. Association of proton pump inhibitors with reduced risk of warfarin-related serious upper gastrointestinal bleeding. Gastroenterology 151, 1105â1112.e10 (2016).
Google ScholarÂ
Sung, J. J. et al. Asia-Pacific working group consensus on non-variceal upper gastrointestinal bleeding: an update 2018. Gut 67, 1757â1768 (2018).
Google ScholarÂ
Qureshi, W. et al. Restarting anticoagulation and outcomes after major gastrointestinal bleeding in atrial fibrillation. Am. J. Cardiol. 113, 662â668 (2014).
Google ScholarÂ
Gralnek, I. M. et al. Endoscopic diagnosis and management of nonvariceal upper gastrointestinal hemorrhage (NVUGIH): European Society of Gastrointestinal Endoscopy (ESGE) guideline â update 2021. Endoscopy 53, 300â332 (2021).
Google ScholarÂ
Gralnek, I. M. et al. Endoscopic diagnosis and management of esophagogastric variceal hemorrhage: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 54, 1094â1120 (2022).
Google ScholarÂ
Sung, J. J. et al. Continuation of low-dose aspirin therapy in peptic ulcer bleeding: a randomized trial. Ann. Intern. Med. 152, 1â9 (2010).
Google ScholarÂ
Forrest, J. A., Finlayson, N. D. & Shearman, D. J. Endoscopy in gastrointestinal bleeding. Lancet 2, 394â397 (1974). Aug 17.
Google ScholarÂ
de Groot, N. L. et al. Reassessment of the predictive value of the Forrest classification for peptic ulcer rebleeding and mortality: can classification be simplified? Endoscopy 46, 46â52 (2014).
Google ScholarÂ
Sherwood, M. W. et al. Gastrointestinal bleeding in patients with atrial fibrillation treated with rivaroxaban or warfarin: ROCKET AF trial. J. Am. Coll. Cardiol. 66, 2271â2281 (2015).
Google ScholarÂ
Aisenberg, J. et al. Gastrointestinal bleeding with edoxaban versus warfarin: results from the ENGAGE AF-TIMI 48 trial (effective anticoagulation with factor Xa next generation in atrial fibrillation-thrombolysis in myocardial infarction). Circ. Cardiovasc. Qual. Outcomes 11, e003998 (2018).
Google ScholarÂ
Garcia, D. A. et al. Gastrointestinal bleeding in patients with atrial fibrillation treated with apixaban or warfarin: insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Am. Heart J. 221, 1â8 (2020).
Google ScholarÂ
Witt, D. M. et al. Risk of thromboembolism, recurrent hemorrhage, and death after warfarin therapy interruption for gastrointestinal tract bleeding. Arch. Intern. Med. 172, 1484â1491 (2012).
Google ScholarÂ
Little, D. H. W. et al. Rates of rebleeding, thrombosis and mortality associated with resumption of anticoagulant therapy after anticoagulant-related bleeding. CMAJ 193, E304âE309 (2021).
Google ScholarÂ
Little, D. et al. Resumption of anticoagulant therapy after anticoagulant-related gastrointestinal bleeding: a systematic review and meta-analysis. Thromb. Res. 175, 102â109 (2019).
Google ScholarÂ
Candeloro, M. et al. Recurrent bleeding and thrombotic events after resumption of oral anticoagulants following gastrointestinal bleeding: communication from the ISTH SSC Subcommittee on Control of Anticoagulation. J. Thromb. Haemost. 19, 2618â2628 (2021).
Google ScholarÂ
Staerk, L. et al. Stroke and recurrent haemorrhage associated with antithrombotic treatment after gastrointestinal bleeding in patients with atrial fibrillation: nationwide cohort study. BMJ 351, h5876 (2015).
Google ScholarÂ
Little, D. H. W. et al. Management of antithrombotic therapy after gastrointestinal bleeding: a mixed methods study of health-care providers. J. Thromb. Haemost. 19, 153â160 (2021).
Google ScholarÂ
Nieto, J. A. et al. Acute venous thromboembolism in patients with recent major bleeding. The influence of the site of bleeding and the time elapsed on outcome. J. Thromb. Haemost. 4, 2367â2372 (2006).
Google ScholarÂ
Burnett, A. E. & Barnes, G. D. A call to action for anticoagulation stewardship. Res. Pract. Thromb. Haemost. 6, e12757 (2022).
Google ScholarÂ
Capodanno, D. et al. Bleeding avoidance strategies in percutaneous coronary intervention. Nat. Rev. Cardiol. 19, 117â132 (2022).
Google ScholarÂ
Angiolillo, D. J. et al. Pharmacokinetic and pharmacodynamic profile of a novel phospholipid aspirin formulation. Clin. Pharmacokinet. 61, 465â479 (2022).
Google ScholarÂ
Cryer, B. et al. Low-dose aspirin-induced ulceration is attenuated by aspirin-phosphatidylcholine: a randomized clinical trial. Am. J. Gastroenterol. 106, 272â277 (2011).
Google ScholarÂ
Storey, R. F. et al. Pharmacodynamics, pharmacokinetics, and safety of single-dose subcutaneous administration of selatogrel, a novel P2Y12 receptor antagonist, in patients with chronic coronary syndromes. Eur. Heart J. 41, 3132â3140 (2020).
Google ScholarÂ
Bhatt, D. L. et al. Antibody-based ticagrelor reversal agent in healthy volunteers. N. Engl. J. Med. 380, 1825â1833 (2019).
Google ScholarÂ
Gurbel, P. A., Bliden, K. P., Chaudhary, R. & Tantry, U. S. First in-human experience with inhaled acetylsalicylic acid for immediate platelet inhibition: comparison with chewed and swallowed acetylsalicylic acid. Circulation 142, 1305â1307 (2020).
Google ScholarÂ
Vivas, D. et al. Effects of intravenous lysine acetylsalicylate versus oral aspirin on platelet responsiveness in patients with ST-segment elevation myocardial infarction: the ECCLIPSE-STEMI trial. J. Thromb. Thrombolysis 55, 203â210 (2023).
Google ScholarÂ
Parodi, G. et al. Orodispersible ticagrelor in acute coronary syndromes: the TASTER study. J. Am. Coll. Cardiol. 78, 292â294 (2021).
Google ScholarÂ
Rai, V., Balters, M. W. & Agrawal, D. K. Factors IX, XI, and XII: potential therapeutic targets for anticoagulant therapy in atherothrombosis. Rev. Cardiovasc. Med. 20, 245â253 (2019).
Google ScholarÂ
Nickel, K. F., Long, A. T., Fuchs, T. A., Butler, L. M. & Renné, T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler. Thromb. Vasc. Biol. 37, 13â20 (2017).
Google ScholarÂ
Nopp, S., Kraemmer, D. & Ay, C. Factor XI inhibitors for prevention and treatment of venous thromboembolism: a review on the rationale and update on current evidence. Front. Cardiovasc. Med. 9, 903029 (2022).
Google ScholarÂ
De Caterina, R., Prisco, D. & Eikelboom, J. W. Factor XI inhibitors: cardiovascular perspectives. Eur. Heart J. 44, 280â292 (2023).
Google ScholarÂ
Bikdeli, B. et al. Sulodexide versus control and the risk of thrombotic and hemorrhagic events: meta-analysis of randomized trials. Semin. Thromb. Hemost. 46, 908â918 (2020).
Google ScholarÂ
Chan, F. K. L. et al. Management of patients on antithrombotic agents undergoing emergency and elective endoscopy: joint Asian Pacific Association of Gastroenterology (APAGE) and Asian Pacific Society for Digestive Endoscopy (APSDE) practice guidelines. Gut 67, 405â417 (2018).
Google ScholarÂ
Uchiyama, S., Tanahashi, N. & Minematsu, K. Clopidogrel two doses comparative 1-year assessment of safety and efficacy (COMPASS) study in Japanese patients with ischemic stroke. Cerebrovasc. Dis. 34, 229â239 (2012).
Google ScholarÂ
Becker, R. C. et al. Bleeding complications with the P2Y12 receptor antagonists clopidogrel and ticagrelor in the Platelet Inhibition and Patient Outcomes (PLATO) trial. Eur. Heart J. 32, 2933â2944 (2011).
Google ScholarÂ
Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981â992 (2011).
Google ScholarÂ
[ad_2]
Source link