[ad_1]
Khoury, G. A., Baliban, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the Swiss-Prot database. Sci. Rep. 1, 90 (2011).
Google ScholarÂ
Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4â8 (1999).
Google ScholarÂ
Hart, G. W. & Copeland, R. J. Glycomics hits the big time. Cell 143, 672â676 (2010).
Google ScholarÂ
Cummings, R. D. & Pierce, J. M. The challenge and promise of glycomics. Chem. Biol. 21, 1â15 (2014).
Google ScholarÂ
Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729â749 (2020).
Google ScholarÂ
Varki, A. Biological roles of glycans. Glycobiology 27, 3â49 (2017).
Google ScholarÂ
Bennett, H. S. Morphological aspects of extracellular polysaccharides. J. Hist. Cytochem. 11, 14â23 (1963).
Google ScholarÂ
Cook, G. M. Glycoproteins in membranes. Biol. Rev. Camb. Philos. Soc. 43, 363â391 (1968).
Google ScholarÂ
Spiro, R. G. Glycoproteins: structure, metabolism and biology. N. Engl. J. Med. 269, 616â621 (1963).
Google ScholarÂ
Gee, D. J. A glycoprotein in cardiac conducting tissue. Br. Heart J. 31, 588â590 (1969).
Google ScholarÂ
Langer, G. A., Frank, J. S., Nudd, L. M. & Seraydarian, K. Sialic acid: effect of removal on calcium exchangeability of cultured heart cells. Science 193, 1013â1015 (1976).
Google ScholarÂ
Frank, J. S., Langer, G. A., Nudd, L. M. & Seraydarian, K. The myocardial cell surface, its histochemistry, and the effect of sialic acid and calcium removal on its stucture and cellular ionic exchange. Circ. Res. 41, 702â714 (1977).
Google ScholarÂ
Varki, A. et al. (eds) Essentials of Glycobiology 4th edn (Cold Spring Harbor Laboratory Press, 2022).
Varki, A. & Kornfeld, S. in Essentials of Glycobiology 4th edn (Varki, A. et al. eds) 1â20 (Cold Spring Harbor Laboratory Press, 2022).
Haltiwanger, R. S. et al. in Essentials of Glycobiology 4th edn (Varki, A. et al. eds) 155â164 (Cold Spring Harbor Laboratory Press, 2022).
Minakata, S. et al. Protein C-mannosylation and C-mannosyl tryptophan in chemical biology and medicine. Molecules 26, 5258 (2021).
Google ScholarÂ
Haynes, P. A. Phosphoglycosylation: a new structural class of glycosylation? Glycobiology 8, 1â5 (1998).
Google ScholarÂ
Maynard, J. C., Burlingame, A. L. & Medzihradszky, K. F. Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), a new post-translational modification in mammals. Mol. Cell Proteom. 15, 3405â3411 (2016).
Google ScholarÂ
Stanley, P., Moremen, K. W., Lewis, N. E, Taniguchi, N. & Aebi, M. N-Glycans. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 103â116 (Cold Spring Harbor Laboratory Press, 2022).
Lewis, A. L., Chen X., Schnaar, R. L. & Varki, A. Sialic acids and other nonulosonic acids. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 185â204 (Cold Spring Harbor Laboratory Press, 2022).
Brockhausen, I., Wandall, H. H., Ten Hagen, K. G. & Stanley, P. O-GalNAc glycans. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 117â128 (Cold Spring Harbor Laboratory Press, 2022).
Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346â366 (2019).
Google ScholarÂ
Merry, C. L. R., Lindahl, U, Couchman, J. & Esko, J. D. Proteoglycans and sulfated glycosaminoglycans. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 217â232 (Cold Spring Harbor Laboratory Press, 2022).
Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11â55 (2015).
Google ScholarÂ
Christensen, G., Herum, K. M. & Lunde, I. G. Sweet, yet underappreciated: proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biol. 75-76, 286â299 (2019).
Google ScholarÂ
Frangogiannis, N. G. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 125, 117â146 (2019).
Google ScholarÂ
Rienks, M., Papageorgiou, A. P., Frangogiannis, N. G. & Heymans, S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ. Res. 114, 872â888 (2014).
Google ScholarÂ
Zimmer, B. M., Barycki, J. J. & Simpson, M. A. Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars. Am. J. Physiol. Cell Physiol. 322, C1201âC1213 (2022).
Google ScholarÂ
Caon, I. et al. Cell energy metabolism and hyaluronan synthesis. J. Histochem. Cytochem. 69, 35â47 (2021).
Google ScholarÂ
Torres, C. R. & Hart, G. W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308â3317 (1984).
Google ScholarÂ
Holt, G. D. & Hart, G. W. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049â8057 (1986).
Google ScholarÂ
Chatham, J. C., Zhang, J. & Wende, A. R. Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology. Physiol. Rev. 101, 427â493 (2021).
Google ScholarÂ
Matsuura, A. et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J. Biol. Chem. 283, 35486â35495 (2008).
Google ScholarÂ
Ogawa, M. & Okajima, T. Structure and function of extracellular O-GlcNAc. Curr. Opin. Struct. Biol. 56, 72â77 (2019).
Google ScholarÂ
Ogawa, M., Senoo, Y., Ikeda, K., Takeuchi, H. & Okajima, T. Structural divergence in O-GlcNAc glycans displayed on epidermal growth factor-like repeats of mammalian notch1. Molecules 23, 1745 (2018).
Google ScholarÂ
Varshney, S. & Stanley, P. EOGT and O-GlcNAc on secreted and membrane proteins. Biochem. Soc. Trans. 45, 401â408 (2017).
Google ScholarÂ
Shaheen, R. et al. Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive AdamsâOliver syndrome. Am. J. Hum. Genet. 92, 598â604 (2013).
Google ScholarÂ
Cohen, I. et al. Autosomal recessive AdamsâOliver syndrome caused by homozygous mutation in EOGT, encoding an EGF domain-specific O-GlcNAc transferase. Eur. J. Hum. Genet. 22, 374â378 (2014).
Google ScholarÂ
Sawaguchi, S. et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. Elife 6, e24419 (2017).
Google ScholarÂ
DeHaven, J. E., Robinson, K. A., Nelson, B. A. & Buse, M. G. A novel variant of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle. Diabetes 50, 2419â2424 (2001).
Google ScholarÂ
Liu, K. et al. Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcine GFAT1 gene. Mol. Biol. Rep. 37, 2711â2717 (2010).
Google ScholarÂ
Wang, Z. V. et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179â1192 (2014).
Google ScholarÂ
Nabeebaccus, A. A. et al. Cardiomyocyte protein O-GlcNAcylation is regulated by GFAT1 not GFAT2. Biochem. Biophys. Res. Commun. 583, 121â127 (2021).
Google ScholarÂ
Ishikita, A. et al. GFAT2 mediates cardiac hypertrophy through HBP-O-GlcNAcylation-Akt pathway. iScience 24, 103517 (2021).
Google ScholarÂ
Freeze, H. H. et al. Glycosylation precursors. In Essentials of Glycobiology (eds Varki, A. et al.) 53â66 (Cold Spring Harbor Laboratory Press, 2022).
Harduin-Lepers, A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj. J. 40, 473â492 (2023).
Google ScholarÂ
Kreppel, L. K. & Hart, G. W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015â32022 (1999).
Google ScholarÂ
Dong, Y. Y. et al. Structures of DPAGT1 explain glycosylation disease mechanisms and advance TB antibiotic design. Cell 175, 1045â1058 (2018).
Google ScholarÂ
Song, W. et al. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. FASEB J. 36, e22149 (2022).
Google ScholarÂ
Vella, P. et al. Tet proteins connect the O-linked N-acetylglucosamine transferase OGT to chromatin in embryonic stem cells. Mol. Cell 49, 645â656 (2013).
Google ScholarÂ
Vigetti, D. et al. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J. Biol. Chem. 287, 35544â35555 (2012).
Google ScholarÂ
Bennmann, D., Weidemann, W., Thate, A., Kreuzmann, D. & Horstkorte, R. Aberrant O-GlcNAcylation disrupts GNE enzyme activity in GNE myopathy. FEBS J. 283, 2285â2294 (2016).
Google ScholarÂ
Ghosh, S. K. et al. Disruption of O-GlcNAc cycling in C. elegans perturbs nucleotide sugar pools and complex glycans. Front. Endocrinol. 5, 197 (2014).
Google ScholarÂ
Marques-da-Silva, D. et al. Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J. Inherit. Metab. Dis. 40, 657â672 (2017).
Google ScholarÂ
Montpetit, M. L. et al. Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proc. Natl Acad. Sci. USA 106, 16517â16522 (2009).
Google ScholarÂ
Franzka, P. et al. Altered glycosylation in the aging heart. Front. Mol. Biosci. 8, 673044 (2021).
Google ScholarÂ
Watson, L. J. et al. Cardiomyocyte Ogt is essential for postnatal viability. Am. J. Physiol. Heart Circ. Physiol. 306, H142âH153 (2014).
Google ScholarÂ
Mu, Y. et al. O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1. PLoS Genet. 16, e1008730 (2020).
Google ScholarÂ
Dassanayaka, S. et al. Cardiomyocyte Oga haploinsufficiency increases O-GlcNAcylation but hastens ventricular dysfunction following myocardial infarction. PLoS ONE 15, e0242250 (2020).
Google ScholarÂ
Ha, C.-M. et al. Sustained O-GlcNAc levels leads to cardiac hypertrophy and reduced mitochondrial function without systolic contractile impairment. J. Am. Heart Assoc. 12, e029898 (2023).
Google ScholarÂ
Umapathi, P. et al. Excessive O-GlcNAcylation causes heart failure and sudden death. Circulation 143, 1687â1703 (2021).
Google ScholarÂ
Laczy, B., Marsh, S. A., Brocks, C. A., Wittmann, I. & Chatham, J. C. Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc-dependent manner. Am. J. Physiol. Heart circ. Physiol. 299, H1715âH1727 (2010).
Google ScholarÂ
Ngoh, G. A., Watson, L. J., Facundo, H. T., Dillmann, W. & Jones, S. P. Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J. Mol. Cell. Cardiol. 45, 313â325 (2008).
Google ScholarÂ
Jones, S. P. et al. Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117, 1172â1182 (2008).
Google ScholarÂ
Narayanan, B. et al. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity. J. Biol. Chem. 299, 105447 (2023).
Google ScholarÂ
Ufret-Vincenty, C. A. et al. Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J. Biol. Chem. 276, 28197â28203 (2001).
Google ScholarÂ
Ednie, A. R., Horton, K. K., Wu, J. & Bennett, E. S. Expression of the sialyltransferase, ST3Gal4, impacts cardiac voltage-gated sodium channel activity, refractory period and ventricular conduction. J. Mol. Cell. Cardiol. 59, 117â127 (2013).
Google ScholarÂ
Ednie, A. R. & Bennett, E. S. Reduced sialylation impacts ventricular repolarization by modulating specific K+ channel isoforms distinctly. J. Biol. Chem. 290, 2769â2783 (2015).
Google ScholarÂ
Jay, S. D. et al. Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. J. Biol. Chem. 266, 3287â3293 (1991).
Google ScholarÂ
Tetreault, M. P. et al. Identification of glycosylation sites essential for surface expression of the CaVα2δ1 subunit and modulation of the cardiac CaV1.2 channel activity. J. Biol. Chem. 291, 4826â4843 (2016).
Google ScholarÂ
Weiss, N., Black, S. A., Bladen, C., Chen, L. & Zamponi, G. W. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflug. Arch. 465, 1159â1170 (2013).
Google ScholarÂ
Ondacova, K., Karmazinova, M., Lazniewska, J., Weiss, N. & Lacinova, L. Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation. Channels 10, 175â184 (2016).
Google ScholarÂ
Liu, Y. et al. Asparagine-linked glycosylation modifies voltage-dependent gating properties of CaV3.1-T-type Ca2+ channel. J. Physiol. Sci. 69, 335â343 (2019).
Google ScholarÂ
Schwetz, T. A., Norring, S. A., Ednie, A. R. & Bennett, E. S. Sialic acids attached to O-glycans modulate voltage-gated potassium channel gating. J. Biol. Chem. 286, 4123â4132 (2011).
Google ScholarÂ
Niwa, N. & Nerbonne, J. M. Molecular determinants of cardiac transient outward potassium current (Ito) expression and regulation. J. Mol. Cell Cardiol. 48, 12â25 (2010).
Google ScholarÂ
Ednie, A. R., Harper, J. M. & Bennett, E. S. Sialic acids attached to N- and O-glycans within the Nav1.4 D1S5-S6 linker contribute to channel gating. Biochim. Biophys. Acta 1850, 307â317 (2015).
Google ScholarÂ
Chandrasekhar, K. D. et al. O-glycosylation of the cardiac IKs complex. J. Physiol. 589, 3721â3730 (2011).
Google ScholarÂ
Yu, P. et al. O-GlcNAcylation of cardiac Nav1.5 contributes to the development of arrhythmias in diabetic hearts. Int. J. Cardiol. 260, 74â81 (2018).
Google ScholarÂ
Ednie, A. R. & Bennett, E. S. Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca2+ channel activity and excitation-contraction coupling. Basic. Res. Cardiol. 115, 59 (2020).
Google ScholarÂ
Ednie, A. R., Paul-Onyia, C. D. & Bennett, E. S. Reduced O-GlcNAcylation diminishes cardiomyocyte Ca2+ dependent facilitation and frequency dependent acceleration of relaxation. J. Mol. Cell Cardiol. 180, 10â21 (2023).
Google ScholarÂ
Hegyi, B. et al. Hyperglycemia regulates cardiac K+ channels via O-GlcNAc-CaMKII and NOX2-ROS-PKC pathways. Basic. Res. Cardiol. 115, 71 (2020).
Google ScholarÂ
Okolo, C. A. et al. Direct regulation of the cardiac ryanodine receptor (RyR2) by O-GlcNAcylation. Cardiovasc. Diabetol. 22, 276 (2023).
Google ScholarÂ
Goth, C. K., Petaja-Repo, U. E. & Rosenkilde, M. M. G protein-coupled receptors in the sweet spot: glycosylation and other post-translational modifications. ACS Pharmacol. Transl. Sci. 3, 237â245 (2020).
Google ScholarÂ
Rands, E. et al. Mutational analysis of beta-adrenergic receptor glycosylation. J. Biol. Chem. 265, 10759â10764 (1990).
Google ScholarÂ
Hakalahti, A. E. et al. Human β1-adrenergic receptor is subject to constitutive and regulated N-terminal cleavage. J. Biol. Chem. 285, 28850â28861 (2010).
Google ScholarÂ
He, J., Xu, J., Castleberry, A. M., Lau, A. G. & Hall, R. A. Glycosylation of β1-adrenergic receptors regulates receptor surface expression and dimerization. Biochem. Biophys. Res. Commun. 297, 565â572 (2002).
Google ScholarÂ
Park, M., Reddy, G. R., Wallukat, G., Xiang, Y. K. & Steinberg, S. F. β1-adrenergic receptor O-glycosylation regulates N-terminal cleavage and signaling responses in cardiomyocytes. Sci. Rep. 7, 7890 (2017).
Google ScholarÂ
Goth, C. K. et al. Site-specific O-glycosylation by polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) co-regulates β1-adrenergic receptor N-terminal cleavage. J. Biol. Chem. 292, 4714â4726 (2017).
Google ScholarÂ
Cao, H. et al. O-GlcNAc transferase affects the signal transduction of β1 adrenoceptor in adult rat cardiomyocytes by increasing the O-GlcNAcylation of β1 adrenoceptor. Biochem. Biophys. Res. Commun. 528, 71â77 (2020).
Google ScholarÂ
Woo, C. M. et al. Mapping and quantification of over 2000 O-linked glycopeptides in activated human t cells with isotope-targeted glycoproteomics (Isotag). Mol. Cell Proteom. 17, 764â775 (2018).
Google ScholarÂ
Zhang, J., Simpson, P. C. & Jensen, B. C. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am. J. Physiol. Heart circ. Physiol. 320, H725âH733 (2021).
Google ScholarÂ
Hynes, R. O. & Naba, A. Overview of the matrisome â an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).
Google ScholarÂ
Halper, J. Basic components of connective tissues and extracellular matrix: fibronectin, fibrinogen, laminin, elastin, fibrillins, fibulins, matrilins, tenascins and thrombospondins. Adv. Exp. Med. Biol. 1348, 105â126 (2021).
Google ScholarÂ
Adams, J. C. & Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 3, a009712 (2011).
Google ScholarÂ
Forbes, T., Pauza, A. G. & Adams, J. C. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am. J. Physiol. Cell Physiol. 321, C826âC845 (2021).
Google ScholarÂ
Swinnen, M. et al. Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation 120, 1585â1597 (2009).
Google ScholarÂ
Matsumoto, K. I. & Aoki, H. The roles of tenascins in cardiovascular, inflammatory, and heritable connective tissue diseases. Front. Immunol. 11, 609752 (2020).
Google ScholarÂ
Frangogiannis, N. G. & Kovacic, J. C. Extracellular matrix in ischemic heart disease, part 4/4: JACC focus seminar. J. Am. Coll. Cardiol. 75, 2219â2235 (2020).
Google ScholarÂ
Diez, J., Gonzalez, A. & Kovacic, J. C. Myocardial interstitial fibrosis in nonischemic heart disease, part 3/4: JACC focus seminar. J. Am. Coll. Cardiol. 75, 2204â2218 (2020).
Google ScholarÂ
Del Monte-Nieto, G., Fischer, J. W., Gorski, D. J., Harvey, R. P. & Kovacic, J. C. Basic biology of extracellular matrix in the cardiovascular system, part 1/4: JACC focus seminar. J. Am. Coll. Cardiol. 75, 2169â2188 (2020).
Google ScholarÂ
Oka, T. et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ. Res. 101, 313â321 (2007).
Google ScholarÂ
Shimazaki, M. et al. Periostin is essential for cardiac healing after acute myocardial infarction. J. Exp. Med. 205, 295â303 (2008).
Google ScholarÂ
Schellings, M. W. et al. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J. Exp. Med. 206, 113â123 (2009).
Google ScholarÂ
Bradshaw, A. D. et al. Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 119, 269â280 (2009).
Google ScholarÂ
Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e876âe894 (2022).
Google ScholarÂ
Ednie, A. R., Deng, W., Yip, K. P. & Bennett, E. S. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy. FASEB J. 33, 1248â1261 (2019).
Google ScholarÂ
Deng, W., Ednie, A. R., Qi, J. & Bennett, E. S. Aberrant sialylation causes dilated cardiomyopathy and stress-induced heart failure. Basic. Res. Cardiol. 111, 57 (2016).
Google ScholarÂ
Kiarash, A. et al. Defective glycosylation of calsequestrin in heart failure. Cardiovasc. Res. 63, 264â272 (2004).
Google ScholarÂ
Jacob, S. et al. Altered calsequestrin glycan processing is common to diverse models of canine heart failure. Mol. Cell Biochem. 377, 11â21 (2013).
Google ScholarÂ
Lapidos, K. A., Kakkar, R. & McNally, E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ. Res. 94, 1023â1031 (2004).
Google ScholarÂ
Mestroni, L. et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J. Am. Coll. Cardiol. 34, 181â190 (1999).
Google ScholarÂ
Townsend, D. Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat. Rec. 297, 1694â1705 (2014).
Google ScholarÂ
Endo, T. Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 157, 1â12 (2015).
Google ScholarÂ
Valera, I. C. et al. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv. Med. Sci. 66, 52â71 (2021).
Google ScholarÂ
Ujihara, Y. et al. Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure. Nat. Commun. 10, 5754 (2019).
Google ScholarÂ
Michele, D. E., Kabaeva, Z., Davis, S. L., Weiss, R. M. & Campbell, K. P. Dystroglycan matrix receptor function in cardiac myocytes is important for limiting activity-induced myocardial damage. Circ. Res. 105, 984â993 (2009).
Google ScholarÂ
Barresi, R. et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by β sarcoglycan mutations. J. Med. Genet. 37, 102â107 (2000).
Google ScholarÂ
Fayssoil, A., Nardi, O., Annane, D. & Orlikowski, D. Left ventricular function in alpha-sarcoglycanopathy and gamma-sarcoglycanopathy. Acta Neurol. Belg. 114, 257â259 (2014).
Google ScholarÂ
Calvo, F. et al. Evaluation of heart involvement in gamma-sarcoglycanopathy (LGMD2C-). A study of ten patients. Neuromuscul. Disord. 10, 560â566 (2000).
Google ScholarÂ
Alonso-Perez, J. et al. Clinical and genetic spectrum of a large cohort of patients with δ-sarcoglycan muscular dystrophy. Brain 145, 596â606 (2022).
Google ScholarÂ
Schade van Westrum, S. M. et al. Cardiac involvement in Dutch patients with sarcoglycanopathy: a cross-sectional cohort and follow-up study. Muscle Nerve 50, 909â913 (2014).
Google ScholarÂ
Sveen, M. L., Thune, J. J., Kober, L. & Vissing, J. Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and Becker muscular dystrophy. Arch. Neurol. 65, 1196â1201 (2008).
Google ScholarÂ
Durbeej, M. et al. Disruption of the β-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol. Cell 5, 141â151 (2000).
Google ScholarÂ
Coral-Vazquez, R. et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98, 465â474 (1999).
Google ScholarÂ
Hack, A. A. et al. Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J. Cell Biol. 142, 1279â1287 (1998).
Google ScholarÂ
Duclos, F. et al. Progressive muscular dystrophy in α-sarcoglycan-deficient mice. J. Cell Biol. 142, 1461â1471 (1998).
Google ScholarÂ
Young, M. E. et al. Proposed regulation of gene expression by glucose in rodent heart. Gene Regul. Syst. Bio 1, 251â262 (2007).
Google ScholarÂ
Yang, S. et al. Integrated glycoprotein immobilization method for glycopeptide and glycan analysis of cardiac hypertrophy. Anal. Chem. 87, 9671â9678 (2015).
Google ScholarÂ
Rong, J. et al. Glycan imaging in intact rat hearts and glycoproteomic analysis reveal the upregulation of sialylation during cardiac hypertrophy. J. Am. Chem. Soc. 136, 17468â17476 (2014).
Google ScholarÂ
Nagai-Okatani, C. & Minamino, N. Aberrant glycosylation in the left ventricle and plasma of rats with cardiac hypertrophy and heart failure. PLoS ONE 11, e0150210 (2016).
Google ScholarÂ
Lunde, I. G. et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol. Genomics 44, 162â172 (2012).
Google ScholarÂ
Agrawal, P. et al. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc. Natl Acad. Sci. USA 111, 4338â4343 (2014).
Google ScholarÂ
Wehbe, N. et al. MicroRNAs in cardiac hypertrophy. Int. J. Mol. Sci. 20, 4714 (2019).
Google ScholarÂ
Indellicato, R. & Trinchera, M. Epigenetic regulation of glycosylation in cancer and other diseases. Int. J. Mol. Sci. 22, 2980 (2021).
Google ScholarÂ
Qin, J., Guo, N., Tong, J. & Wang, Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J. Mol. Cell. Cardiol. 159, 120â129 (2021).
Google ScholarÂ
Mailleux, F., Gélinas, R., Beauloye, C., Horman, S. & Bertrand, L. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? BBA Mol. Basis Dis. 1862, 2232â2243 (2016).
Google ScholarÂ
Facundo, H. T. et al. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 302, H2122âH2130 (2012).
Google ScholarÂ
Gelinas, R. et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat. Commun. 9, 374 (2018).
Google ScholarÂ
Tran, D. H. et al. Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat. Commun. 11, 1771 (2020).
Google ScholarÂ
Zhu, W. Z., El-Nachef, D., Yang, X., Ledee, D. & Olson, A. K. O-GlcNAc transferase promotes compensated cardiac function and protein kinase A O-GlcNAcylation during early and established pathological hypertrophy from pressure overload. J. Am. Heart Assoc. 8, e011260 (2019).
Google ScholarÂ
Prakoso, D. et al. Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovasc. Res. 118, 212â225 (2022).
Google ScholarÂ
Zhu, W. Z. et al. First comprehensive identification of cardiac proteins with putative increased O-GlcNAc levels during pressure overload hypertrophy. PLoS ONE 17, e0276285 (2022).
Google ScholarÂ
Ritchie, R. H. & Abel, E. D. Basic mechanisms of diabetic heart disease. Circ. Res. 126, 1501â1525 (2020).
Google ScholarÂ
Zhao, Q., Jia, T. Z., Cao, Q. C., Tian, F. & Ying, W. T. A crude 1-DNJ extract from home made Bombyx batryticatus inhibits diabetic cardiomyopathy-associated fibrosis in db/db mice and reduces protein N-glycosylation levels. Int. J. Mol. Sci. 19, 1699 (2018).
Google ScholarÂ
Wittenbecher, C. et al. Plasma N-glycans as emerging biomarkers of cardiometabolic risk: a prospective investigation in the EPIC-Potsdam cohort study. Diabetes Care 43, 661â668 (2020).
Google ScholarÂ
Memarian, E. et al. Plasma protein N-glycosylation is associated with cardiovascular disease, nephropathy, and retinopathy in type 2 diabetes. BMJ Open. Diabetes Res. Care 9, e002345 (2021).
Google ScholarÂ
Testa, R. et al. N-glycomic changes in serum proteins in type 2 diabetes mellitus correlate with complications and with metabolic syndrome parameters. PLoS ONE 10, e0119983 (2015).
Google ScholarÂ
Gonzalez-Quesada, C. et al. Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ. Res. 113, 1331â1344 (2013).
Google ScholarÂ
Chen, F. et al. Cardioprotective effect of decorin in type 2 diabetes. Front. Endocrinol. 11, 479258 (2020).
Google ScholarÂ
Lai, J. et al. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling. Sci. Rep. 7, 44473 (2017).
Google ScholarÂ
Frangogiannis, N. G. Matricellular proteins in cardiac adaptation and disease. Physiol. Rev. 92, 635â688 (2012).
Google ScholarÂ
Way, K. J. et al. Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C β2 activation and diabetes. Diabetes 51, 2709â2718 (2002).
Google ScholarÂ
Wang, X. et al. Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor. Am. J. Physiol. Cell Physiol. 297, C1490âC1500 (2009).
Google ScholarÂ
Twigg, S. M. Regulation and bioactivity of the CCN family of genes and proteins in obesity and diabetes. J. Cell Commun. Signal. 12, 359â368 (2018).
Google ScholarÂ
Accornero, F. et al. Genetic analysis of connective tissue growth factor as an effector of transforming growth factor β signaling and cardiac remodeling. Mol. Cell Biol. 35, 2154â2164 (2015).
Google ScholarÂ
Dorn, L. E., Petrosino, J. M., Wright, P. & Accornero, F. CTGF/CCN2 is an autocrine regulator of cardiac fibrosis. J. Mol. Cell. Cardiol. 121, 205â211 (2018).
Google ScholarÂ
Chatham, J. C., Young, M. E. & Zhang, J. Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications. Curr. Opin. Pharmacol. 57, 1â12 (2021).
Google ScholarÂ
Hu, Y. et al. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ. Res. 96, 1006â1013 (2005).
Google ScholarÂ
Ramirez-Correa, G. et al. Removal of abnormal myofilament O-GlcNAcylation restores Ca2+ sensitivity in diabetic cardiac muscle. Diabetes 64, 3573â3587 (2015).
Google ScholarÂ
Hu, Y. et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J. Biol. Chem. 284, 547â555 (2009).
Google ScholarÂ
Banerjee, P. S., Ma, J. & Hart, G. W. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc. Natl Acad. Sci. USA 112, 6050â6055 (2015).
Google ScholarÂ
Ma, J. et al. Comparative proteomics reveals dysregulated mitochondrial O-GlcNAcylation in diabetic hearts. J. Proteome Res. 15, 2254â2264 (2016).
Google ScholarÂ
Gawlowski, T. et al. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J. Biol. Chem. 287, 30024â30034 (2012).
Google ScholarÂ
Cividini, F. et al. O-GlcNAcylation of 8-oxoguanine DNA glycosylase (Ogg1) impairs oxidative mitochondrial DNA lesion repair in diabetic hearts. J. Biol. Chem. 291, 26515â26528 (2016).
Google ScholarÂ
Hegyi, B., Bers, D. M. & Bossuyt, J. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J. Mol. Cell. Cardiol. 127, 246â259 (2019).
Google ScholarÂ
Erickson, J. R. et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502, 372â376 (2013).
Google ScholarÂ
Lu, S. et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circ. Res. 126, e80âe96 (2020).
Google ScholarÂ
Kronlage, M. et al. O-GlcNAcylation of histone deacetylase 4 protects the diabetic heart from failure. Circulation 140, 580â594 (2019).
Google ScholarÂ
Xie, Z., He, C. & Zou, M. H. AMP-activated protein kinase modulates cardiac autophagy in diabetic cardiomyopathy. Autophagy 7, 1254â1255 (2011).
Google ScholarÂ
Sciarretta, S., Boppana, V. S., Umapathi, M., Frati, G. & Sadoshima, J. Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc. Diagn. Ther. 5, 394â402 (2015).
Google ScholarÂ
Wani, W. Y. et al. Regulation of autophagy by protein post-translational modification. Lab. Invest. 95, 14â25 (2015).
Google ScholarÂ
Zhang, J., Chatham, J. C. & Young, M. E. Circadian regulation of cardiac physiology: rhythms that keep the heart beating. Annu. Rev. Physiol. 82, 79â101 (2020).
Google ScholarÂ
Durgan, D. J. et al. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J. Biol. Chem. 286, 44606â44619 (2011).
Google ScholarÂ
Qin, C. X. et al. Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications. Pharmacol. Res. 116, 45â56 (2017).
Google ScholarÂ
Aguilar, H. et al. Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am. J. Physiol. Cell Physiol. 306, C794âC804 (2014).
Google ScholarÂ
Ha, C. M. et al. Sustained increases in cardiomyocyte protein O-linked β-N-acetylglucosamine levels lead to cardiac hypertrophy and reduced mitochondrial function without systolic contractile impairment. J. Am. Heart Assoc. 12, e029898 (2023).
Google ScholarÂ
Snapp, K. R. et al. A novel P-selectin glycoprotein ligand-1 monoclonal antibody recognizes an epitope within the tyrosine sulfate motif of human PSGL-1 and blocks recognition of both P- and L-selectin. Blood 91, 154â164 (1998).
Google ScholarÂ
Hickey, M. J. et al. L-selectin facilitates emigration and extravascular locomotion of leukocytes during acute inflammatory responses in vivo. J. Immunol. 165, 7164â7170 (2000).
Google ScholarÂ
Rodgers, S. D., Camphausen, R. T. & Hammer, D. A. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys. J. 79, 694â706 (2000).
Google ScholarÂ
Sperandio, M. et al. α2,3-Sialyltransferase-IV is essential for L-selectin ligand function in inflammation. Eur. J. Immunol. 36, 3207â3215 (2006).
Google ScholarÂ
Yang, W. H., Nussbaum, C., Grewal, P. K., Marth, J. D. & Sperandio, M. Coordinated roles of ST3Gal-VI and ST3Gal-IV sialyltransferases in the synthesis of selectin ligands. Blood 120, 1015â1026 (2012).
Google ScholarÂ
Jung, U. & Ley, K. Mice lacking two or all three selectins demonstrate overlapping and distinct functions for each selectin. J. Immunol. 162, 6755â6762 (1999).
Google ScholarÂ
Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med. 24, 711â720 (2018).
Google ScholarÂ
Randolph, G. J. The fate of monocytes in atherosclerosis. J. Thromb. Haemost. 7, 28â30 (2009).
Google ScholarÂ
Regal-McDonald, K. et al. Assessment of ICAM-1 N-glycoforms in mouse and human models of endothelial dysfunction. PLoS ONE 15, e0230358 (2020).
Google ScholarÂ
Regal-McDonald, K., Xu, B., Barnes, J. W. & Patel, R. P. High-mannose intercellular adhesion molecule-1 enhances CD16+ monocyte adhesion to the endothelium. Am. J. Physiol. Heart Circ. Physiol. 317, H1028âH1038 (2019).
Google ScholarÂ
Scott, D. W. et al. Role of endothelial N-glycan mannose residues in monocyte recruitment during atherogenesis. Arterioscler. Thromb. Vasc. Biol. 32, e51âe59 (2012).
Google ScholarÂ
Augustin-Voss, H. G. & Pauli, B. U. Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins. J. Cell Biol. 119, 483â491 (1992).
Google ScholarÂ
Scott, D. W., Vallejo, M. O. & Patel, R. P. Heterogenic endothelial responses to inflammation: role for differentital N-glycosylation and vascular bed of origin. J. Am. Heart Assoc. 2, e000263 (2013).
Google ScholarÂ
Regal-McDonald, K. & Patel, R. P. Selective recruitment of monocyte subsets by endothelial N-glycans. Am. J. Pathol. 190, 947â957 (2020).
Google ScholarÂ
Aird, W. C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100, 174â190 (2007).
Google ScholarÂ
Scott, D. W., Vallejo, M. O. & Patel, R. P. Heterogenic endothelial responses to inflammation: role for differential N-glycosylation and vascular bed of origin. J. Am. Heart Assoc. 2, e000263 (2013).
Google ScholarÂ
Scott, D. W. & Patel, R. P. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 23, 622â633 (2013).
Google ScholarÂ
Sperandio, M., Gleissner, C. A. & Ley, K. Glycosylation in immune cell trafficking. Immunol. Rev. 230, 97â113 (2009).
Google ScholarÂ
Garcia-Vallejo, J. J. et al. Activation of human endothelial cells by tumor necrosis factor-α results in profound changes in the expression of glycosylation-related genes. J. Cell Physiol. 206, 203â210 (2006).
Google ScholarÂ
Chacko, B. K., Scott, D. W., Chandler, R. T. & Patel, R. P. Endothelial surface N-glycans mediate monocyte adhesion and are targets for anti-inflammatory effects of peroxisome proliferator-activated receptor γ ligands. J. Biol. Chem. 286, 38738â38747 (2011).
Google ScholarÂ
Mun, G. I., Jang, S. I. & Boo, Y. C. Laminar shear stress induces the expression of aquaporin 1 in endothelial cells involved in wound healing. Biochem. Biophys. Res. Commun. 430, 554â559 (2013).
Google ScholarÂ
Mun, G. I., Lee, S. J., An, S. M., Kim, I. K. & Boo, Y. C. Differential gene expression in young and senescent endothelial cells under static and laminar shear stress conditions. Free. Radic. Biol. Med. 47, 291â299 (2009).
Google ScholarÂ
Barallobre-Barreiro, J. et al. Extracellular matrix in vascular disease, part 2/4: JACC focus seminar. J. Am. Coll. Cardiol. 75, 2189â2203 (2020).
Google ScholarÂ
Ballout, R. A. & Remaley, A. T. GlycA: a new biomarker for systemic inflammation and cardiovascular disease (CVD) risk assessment. J. Lab. Precis. Med. 5, 17 (2020).
Google ScholarÂ
Akinkuolie, A. O., Buring, J. E., Ridker, P. M. & Mora, S. A novel protein glycan biomarker and future cardiovascular disease events. J. Am. Heart Assoc. 3, e001221 (2014).
Google ScholarÂ
Duprez, D. A. et al. Comparison of the predictive value of GlycA and other biomarkers of inflammation for total death, incident cardiovascular events, noncardiovascular and noncancer inflammatory-related events, and total cancer events. Clin. Chem. 62, 1020â1031 (2016).
Google ScholarÂ
Gruppen, E. G. et al. GlycA, a pro-inflammatory glycoprotein biomarker, and incident cardiovascular disease: relationship with C-reactive protein and renal function. PLoS ONE 10, e0139057 (2015).
Google ScholarÂ
Tian, C., Mahara, G., Zhang, H. & Tan, X. Association of immunoglobulin G N-glycosylation with carotid atherosclerotic plaque phenotypes and actual clinical cardiovascular events: a study protocol for a longitudinal prospective cohort study. BMJ Open. 12, e058922 (2022).
Google ScholarÂ
Radovani, B. et al. IgG N-glycosylation is altered in coronary artery disease. Biomolecules 13, 375 (2023).
Google ScholarÂ
Peng, J. et al. Supplementation with the sialic acid precursor N-acetyl-D-mannosamine breaks the link between obesity and hypertension. Circulation 140, 2005â2018 (2019).
Google ScholarÂ
Birukov, A. et al. Immunoglobulin G N-glycosylation signatures in incident type 2 diabetes and cardiovascular disease. Diabetes Care 45, 2729â2736 (2022).
Google ScholarÂ
Mise, K. et al. Novel urinary glycan biomarkers predict cardiovascular events in patients with type 2 diabetes: a multicenter prospective study with 5-year follow up (U-CARE Study 2). Front. Cardiovasc. Med. 8, 668059 (2021).
Google ScholarÂ
Li, X. et al. Type 2 diabetes mellitus is associated with the immunoglobulin G N-Glycome through putative proinflammatory mechanisms in an Australian population. OMICS 23, 631â639 (2019).
Google ScholarÂ
Wang, B. Y. et al. A nested case-control study to explore the association between immunoglobulin G N-glycans and ischemic stroke. Biomed. Env. Sci. 36, 389â396 (2023).
Google ScholarÂ
Plavsa, B. et al. The N-glycosylation of total plasma proteins and IgG in atrial fibrillation. Biomolecules 13, 605 (2023).
Google ScholarÂ
Romo, E. Z. & Zivkovic, A. M. Glycosylation of HDL-associated proteins and its implications in cardiovascular disease diagnosis, metabolism and function. Front. Cardiovasc. Med. 9, 928566 (2022).
Google ScholarÂ
Bolanle, I. O., Riches-Suman, K., Loubani, M., Williamson, R. & Palmer, T. M. Revascularisation of type 2 diabetics with coronary artery disease: insights and therapeutic targeting of O-GlcNAcylation. Nutr. Metab. Cardiovasc. Dis. 31, 1349â1356 (2021).
Google ScholarÂ
Byon, C. H. & Kim, S. W. Regulatory effects of O-GlcNAcylation in vascular smooth muscle cells on diabetic vasculopathy. J. Lipid Atheroscler. 9, 243â254 (2020).
Google ScholarÂ
Khanal, S. et al. Deletion of smooth muscle O-GlcNAc transferase prevents development of atherosclerosis in western diet-fed hyperglycemic ApoE-/- mice in vivo. Int. J. Mol. Sci. 24, 7899 (2023).
Google ScholarÂ
Xiong, X. et al. αSMA-Cre-mediated Ogt deletion leads to heart failure and vascular smooth muscle cell dysfunction in mice. Biochem. Biophys. Res. Commun. 625, 31â37 (2022).
Google ScholarÂ
Lima, V. V. et al. O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Cardiovasc. Res. 89, 614â622 (2011).
Google ScholarÂ
Zhang, H. et al. Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro. Proteomics 7, e2300179 (2023).
Hilgers, R. H. et al. Acute O-GlcNAcylation prevents inflammation-induced vascular dysfunction. Am. J. Physiol. Heart Circ. Physiol. 303, H513âH522 (2012).
Google ScholarÂ
Aulak, K. S. et al. Specific O-GlcNAc modification at Ser-615 modulates eNOS function. Redox Biol. 36, 101625 (2020).
Google ScholarÂ
Masaki, N. et al. O-GlcNAcylation mediates glucose-induced alterations in endothelial cell phenotype in human diabetes mellitus. J. Am. Heart Assoc. 9, e014046 (2020).
Google ScholarÂ
Zhang, L. et al. Oscillatory shear stress-mediated aberrant O-GlcNAc SIRT3 accelerates glycocalyx inflammatory injury via LKB1/p47(phox)/Hyal2 signaling. Cell Signal. 109, 110790 (2023).
Google ScholarÂ
Gorelik, A. et al. Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Nat. Struct. Mol. Biol. 26, 1071â1077 (2019).
Google ScholarÂ
Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363â374 (2023).
Google ScholarÂ
Flynn, R. A. et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109â3124.e22 (2021).
Google ScholarÂ
Yan, W. et al. Decorin gene delivery inhibits cardiac fibrosis in spontaneously hypertensive rats by modulation of transforming growth factor-β/Smad and p38 mitogen-activated protein kinase signaling pathways. Hum. Gene Ther. 20, 1190â1200 (2009).
Google ScholarÂ
Dang, H., Ye, Y., Zhao, X. & Zeng, Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc. Disord. 20, 320 (2020).
Google ScholarÂ
Liu, C., Tong, H., Li, S. & Yan, Y. Effect of ECM2 expression on bovine skeletal muscle-derived satellite cell differentiation. Cell Biol. Int. 42, 525â532 (2018).
Google ScholarÂ
Andenaes, K. et al. The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling. PLoS ONE 13, e0201422 (2018).
Google ScholarÂ
Hultgardh-Nilsson, A., Boren, J. & Chakravarti, S. The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis. J. Intern. Med. 278, 447â461 (2015).
Google ScholarÂ
Aboumsallem, J. P. et al. Multi-omics analyses identify molecular signatures with prognostic values in different heart failure aetiologies. J. Mol. Cell. Cardiol. 175, 13â28 (2023).
Google ScholarÂ
Zhu, Y., Yang, X. & Zu, Y. Integrated analysis of WGCNA and machine learning identified diagnostic biomarkers in dilated cardiomyopathy with heart failure. Front. Cell Dev. Biol. 10, 1089915 (2022).
Google ScholarÂ
Barallobre-Barreiro, J. et al. Proteomics analysis of cardiac extracellular matrix remodeling in a porcine model of ischemia/reperfusion injury. Circulation 125, 789â802 (2012).
Google ScholarÂ
Carlson, E. C. et al. Keratocan and lumican regulate neutrophil infiltration and corneal clarity in lipopolysaccharide-induced keratitis by direct interaction with CXCL1. J. Biol. Chem. 282, 35502â35509 (2007).
Google ScholarÂ
Malgija, B., Kumar, N. S. & Piramanayagam, S. Collective transcriptomic deregulation of hypertrophic and dilated cardiomyopathy â importance of fibrotic mechanism in heart failure. Comput. Biol. Chem. 73, 85â94 (2018).
Google ScholarÂ
Maiwald, S. et al. Mutation in KERA identified by linkage analysis and targeted resequencing in a pedigree with premature atherosclerosis. PLoS ONE 9, e98289 (2014).
Google ScholarÂ
Skenteris, N. T. et al. Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification. Clin. Transl. Med. 12, e682 (2022).
Google ScholarÂ
Goncalves, I. et al. Osteomodulin gene expression is associated with plaque calcification, stability, and fewer cardiovascular events in the CPIP cohort. Stroke 53, e79âe84 (2022).
Google ScholarÂ
Le Goff, M. M. et al. Opticin exerts its anti-angiogenic activity by regulating extracellular matrix adhesiveness. J. Biol. Chem. 287, 28027â28036 (2012).
Google ScholarÂ
Deckx, S. et al. Osteoglycin prevents the development of age-related diastolic dysfunction during pressure overload by reducing cardiac fibrosis and inflammation. Matrix Biol. 66, 110â124 (2018).
Google ScholarÂ
Petretto, E. et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 40, 546â552 (2008).
Google ScholarÂ
Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127â2143 (2018).
Google ScholarÂ
Hessle, L. et al. The skeletal phenotype of chondroadherin deficient mice. PLoS ONE 8, e63080 (2014).
Google ScholarÂ
Hutter, R. et al. Novel small leucine-rich repeat protein podocan is a negative regulator of migration and proliferation of smooth muscle cells, modulates neointima formation, and is expressed in human atheroma. Circulation 128, 2351â2363 (2013).
Google ScholarÂ
Li, S. et al. Podocan promotes differentiation of bovine skeletal muscle satellite cells by regulating the Wnt4-β-catenin signaling pathway. Front. Physiol. 10, 1010 (2019).
Google ScholarÂ
Mochida, Y. et al. Podocan-like protein: a novel small leucine-rich repeat matrix protein in bone. Biochem. Biophys. Res. Commun. 410, 333â338 (2011).
Google ScholarÂ
Zhang, Z. et al. Whole-genome sequencing identifies novel candidate pathogenic variants associated with left ventricular non-compaction in a three-generation family. Clin. Transl. Med. 11, e501 (2021).
Google ScholarÂ
Koch, C. D., Lee, C. M. & Apte, S. S. Aggrecan in cardiovascular development and disease. J. Histochem. Cytochem. 68, 777â795 (2020).
Google ScholarÂ
Rauch, U., Feng, K. & Zhou, X. H. Neurocan: a brain chondroitin sulfate proteoglycan. Cell Mol. Life Sci. 58, 1842â1856 (2001).
Google ScholarÂ
Mishima, N. & Hoffman, S. Neurocan in the embryonic avian heart and vasculature. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 272, 556â562 (2003).
Google ScholarÂ
Chelyshev, Y. A., Kabdesh, I. M. & Mukhamedshina, Y. O. Extracellular matrix in neural plasticity and regeneration. Cell Mol. Neurobiol. 42, 647â664 (2022).
Google ScholarÂ
Chen, J. et al. Endocan: a key player of cardiovascular disease. Front. Cardiovasc. Med. 8, 798699 (2021).
Google ScholarÂ
Klisic, A. & Patoulias, D. The role of endocan in cardiometabolic disorders. Metabolites 13, 640 (2023).
Google ScholarÂ
Solakyildirim, K. et al. Proteoglycan 4 (lubricin) is a highly sialylated glycoprotein associated with cardiac valve damage in animal models of infective endocarditis. Glycobiology 31, 1582â1595 (2021).
Google ScholarÂ
Das, N., Schmidt, T. A., Krawetz, R. J. & Dufour, A. Proteoglycan 4: from mere lubricant to regulator of tissue homeostasis and inflammation: does proteoglycan 4 have the ability to buffer the inflammatory response? Bioessays 41, e1800166 (2019).
Google ScholarÂ
Park, D. S. J. et al. Human pericardial proteoglycan 4 (lubricin): implications for postcardiotomy intrathoracic adhesion formation. J. Thorac. Cardiovasc. Surg. 156, 1598â1608 (2018).
Google ScholarÂ
Nahon, J. E. et al. Proteoglycan 4 regulates macrophage function without altering atherosclerotic lesion formation in a murine bone marrow-specific deletion model. Atherosclerosis 274, 120â127 (2018).
Google ScholarÂ
Huang, Q. & Huang, Q. Inhibition of lncRNA DANCR prevents heart failure by ameliorating cardiac hypertrophy and fibrosis via regulation of the miR-758-3p/PRG4/Smad axis. J. Cardiovasc. Transl. Res. 16, 1357â1372 (2023).
Google ScholarÂ
Lord, M. S., Melrose, J., Day, A. J. & Whitelock, J. M. The inter-α-trypsin inhibitor family: versatile molecules in biology and pathology. J. Histochem. Cytochem. 68, 907â927 (2020).
Google ScholarÂ
Edgell, C. J., BaSalamah, M. A. & Marr, H. S. Testican-1: a differentially expressed proteoglycan with protease inhibiting activities. Int. Rev. Cytol. 236, 101â122 (2004).
Google ScholarÂ
Nolan, D. K. et al. Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5. BMC Genet. 13, 12 (2012).
Google ScholarÂ
Choi, Y., Chung, H., Jung, H., Couchman, J. R. & Oh, E. S. Syndecans as cell surface receptors: unique structure equates with functional diversity. Matrix Biol. 30, 93â99 (2011).
Google ScholarÂ
Wang, X., Lu, Y., Xie, Y., Shen, J. & Xiang, M. Emerging roles of proteoglycans in cardiac remodeling. Int. J. Cardiol. 278, 192â198 (2019).
Google ScholarÂ
Sinha, A. et al. Protein-protein interactions between tenascin-R and RPTPζ/phosphacan are critical to maintain the architecture of perineuronal nets. J. Biol. Chem. 299, 104952 (2023).
Google ScholarÂ
Katraki-Pavlou, S. et al. Protein tyrosine phosphatase receptor-ζ1 deletion triggers defective heart morphogenesis in mice and zebrafish. Am. J. Physiol. Heart circ. Physiol. 322, H8âH24 (2022).
Google ScholarÂ
Zanin, M. K. et al. Distinct spatial and temporal distributions of aggrecan and versican in the embryonic chick heart. Anat. Rec. 256, 366â380 (1999).
Google ScholarÂ
Tamburini, E. et al. Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB J. 33, 3112â3128 (2019).
Google ScholarÂ
Grako, K. A., Ochiya, T., Barritt, D., Nishiyama, A. & Stallcup, W. B. PDGF α-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J. Cell Sci. 112, 905â915 (1999).
Google ScholarÂ
Alex, L., Tuleta, I., Harikrishnan, V. & Frangogiannis, N. G. Validation of specific and reliable genetic tools to identify, label, and target cardiac pericytes in mice. J. Am. Heart Assoc. 11, e023171 (2022).
Google ScholarÂ
Karmouch, J. et al. Distinct cellular basis for early cardiac arrhythmias, the cardinal manifestation of arrhythmogenic cardiomyopathy, and the skin phenotype of cardiocutaneous syndromes. Circ. Res. 121, 1346â1359 (2017).
Google ScholarÂ
Quijada, P. et al. Cardiac pericytes mediate the remodeling response to myocardial infarction. J. Clin. Invest. 133, e162188 (2023).
Google ScholarÂ
Strate, I., Tessadori, F. & Bakkers, J. Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling. Development 142, 1767â1776 (2015).
Google ScholarÂ
Thota, L. N. R. & Chignalia, A. Z. The role of the glypican and syndecan families of heparan sulfate proteoglycans in cardiovascular function and disease. Am. J. Physiol. Cell Physiol. 323, C1052âC1060 (2022).
Google ScholarÂ
Melleby, A. O. et al. The heparan sulfate proteoglycan glypican-6 is upregulated in the failing heart, and regulates cardiomyocyte growth through ERK1/2 signaling. PLoS ONE 11, e0165079 (2016).
Google ScholarÂ
Souza, D. S., Chignalia, A. Z. & Carvalho-de-Souza, J. L. Modulation of cardiac voltage-activated K+ currents by glypican 1 heparan sulfate proteoglycan. Life Sci. 308, 120916 (2022).
Google ScholarÂ
Nonaka, R. et al. Perlecan deficiency causes endothelial dysfunction by reducing the expression of endothelial nitric oxide synthase. Physiol. Rep. 3, e12272 (2015).
Google ScholarÂ
Sasse, P. et al. Perlecan is critical for heart stability. Cardiovasc. Res. 80, 435â444 (2008).
Google ScholarÂ
Bassat, E. et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547, 179â184 (2017).
Google ScholarÂ
Sun, X. et al. The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development. Development 148, dev197525 (2021).
Google ScholarÂ
Baehr, A. et al. Agrin promotes coordinated therapeutic processes leading to improved cardiac repair in pigs. Circulation 142, 868â881 (2020).
Google ScholarÂ
Isobe, K. et al. Inhibition of endostatin/collagen XVIII deteriorates left ventricular remodeling and heart failure in rat myocardial infarction model. Circ. J. 74, 109â119 (2010).
Google ScholarÂ
Moulton, K. S. et al. Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis. Circulation 110, 1330â1336 (2004).
Google ScholarÂ
Rasi, K. et al. Collagen XV is necessary for modeling of the extracellular matrix and its deficiency predisposes to cardiomyopathy. Circ. Res. 107, 1241â1252 (2010).
Google ScholarÂ
Eklund, L. et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc. Natl Acad. Sci. USA 98, 1194â1199 (2001).
Google ScholarÂ
Durgin, B. G. et al. Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am. J. Physiol. Heart Circ. Physiol. 312, H943âH958 (2017).
Google ScholarÂ
van der Rest, M. & Mayne, R. Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J. Biol. Chem. 263, 1615â1618 (1988).
Google ScholarÂ
Izu, Y. & Birk, D. E. Collagen XII mediated cellular and extracellular mechanisms in development, regeneration, and disease. Front. Cell Dev. Biol. 11, 1129000 (2023).
Google ScholarÂ
Liu, C. Y., Olsen, B. R. & Kao, W. W. Developmental patterns of two α1(IX) collagen mRNA isoforms in mouse. Dev. Dyn. 198, 150â157 (1993).
Google ScholarÂ
Marro, J., Pfefferli, C., de Preux Charles, A. S., Bise, T. & Jazwinska, A. Collagen XII contributes to epicardial and connective tissues in the zebrafish heart during ontogenesis and regeneration. PLoS ONE 11, e0165497 (2016).
Google ScholarÂ
Gil-Cayuela, C. et al. New altered non-fibrillar collagens in human dilated cardiomyopathy: role in the remodeling process. PLoS ONE 11, e0168130 (2016).
Google ScholarÂ
Peacock, J. D., Lu, Y., Koch, M., Kadler, K. E. & Lincoln, J. Temporal and spatial expression of collagens during murine atrioventricular heart valve development and maintenance. Dev. Dyn. 237, 3051â3058 (2008).
Google ScholarÂ
Williams, B. et al. Use of whole genome analysis to identify shared genomic variants across breeds in canine mitral valve disease. Hum. Genet. 140, 1563â1568 (2021).
Google ScholarÂ
Isono, T. et al. Transcriptome analysis of a dog model of congestive heart failure shows that collagen-related 2-oxoglutarate-dependent dioxygenases contribute to heart failure. Sci. Rep. 12, 22569 (2022).
Google ScholarÂ
Imoto-Tsubakimoto, H. et al. Serglycin is a novel adipocytokine highly expressed in epicardial adipose tissue. Biochem. Biophys. Res. Commun. 432, 105â110 (2013).
Google ScholarÂ
Ilgin, B. U. et al. Association between serum serglycin levels and ST-segment elevation myocardial infarction. Arq. Bras. Cardiol. 116, 756â762 (2021).
Google ScholarÂ
Zhuo, L., Salustri, A. & Kimata, K. A physiological function of serum proteoglycan bikunin: the chondroitin sulfate moiety plays a central role. Glycoconj. J. 19, 241â247 (2002).
Google ScholarÂ
Maurel, P., Rauch, U., Flad, M., Margolis, R. K. & Margolis, R. U. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc. Natl Acad. Sci. USA 91, 2512â2516 (1994).
Google ScholarÂ
Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L. & Folkman, J. The generation of endostatin is mediated by elastase. Cancer Res. 59, 6052â6056 (1999).
Google ScholarÂ
Wen, J. et al. Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc. Natl Acad. Sci. USA 111, 15723â15728 (2014).
Google ScholarÂ
[ad_2]
Source link