[ad_1]

  • Collaborators., G. D. a. I. I. a. P. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858. https://doi.org/10.1016/s0140-6736(18)32279-7 (2018).

  • van Riet, E. et al. Epidemiology of heart failure: The prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 18, 242–252. https://doi.org/10.1002/ejhf.483 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559–573. https://doi.org/10.1038/s41569-020-0363-2 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098. https://doi.org/10.1056/NEJMoa2206286 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461. https://doi.org/10.1056/NEJMoa2107038 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chron ic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Associ ation (HFA) of the ESC. Eur. Heart J. 37, 2129–2200. https://doi.org/10.1093/eurheartj/ehw128 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Pugliese, N. R. et al. Predicting the transition to and progression of heart failure with preserved ejection fraction: A weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur. J. Prev. Cardiol. 28, 1650–1661. https://doi.org/10.1093/eurjpc/zwaa129 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Reddy, Y. N. V., Carter, R. E., Obokata, M., Redfield, M. M. & Borlaug, B. A. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138, 861–870. https://doi.org/10.1161/CIRCULATIONAHA.118.034646 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pieske, B. et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 40, 3297–3317. https://doi.org/10.1093/eurheartj/ehz641 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Tadic, M., Cuspidi, C., Calicchio, F., Grassi, G. & Mancia, G. Diagnostic algorithm for HFpEF: How much is the recent consensus applicable in clinical practice?. Heart Fail. Rev. 26, 1485–1493. https://doi.org/10.1007/s10741-020-09966-4 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Samson, R. & Le Jemtel, T. Therapeutic stalemate in heart failure with preserved ejection fraction. J. Am. Heart Assoc. 10, e021120. https://doi.org/10.1161/jaha.121.021120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Mimicking metabolic disturbance in establishing animal models of heart failure with preserved ejection fraction. Front. Physiol. 13, 879214. https://doi.org/10.3389/fphys.2022.879214 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanders-van Wijk, S. et al. Proteomic evaluation of the comorbidity-inflammation paradigm in heart failure with preserved ejection fraction: Results From the PROMIS-HFpEF study. Circulation 142, 2029–2044. https://doi.org/10.1161/circulationaha.120.045810 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishra, S. & Kass, D. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 18, 400–423. https://doi.org/10.1038/s41569-020-00480-6 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pugliese, N. R. et al. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: Implications for future interventions. Cardiovasc. Res. 118, 3536–3555. https://doi.org/10.1093/cvr/cvac133 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silberman, S. et al. Neutrophil-lymphocyte ratio: Prognostic impact in heart surgery. Early outcomes and late survival. Ann. Thorac. Surg. 105, 581–586. https://doi.org/10.1016/j.athoracsur.2017.07.033 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Bai, B. et al. High neutrophil to lymphocyte ratio and its gene signatures correlate with diastolic dysfunction in heart failure with preserved ejection fraction. Front. Cardiovasc. Med. 8, 614757. https://doi.org/10.3389/fcvm.2021.614757 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mandurino-Mirizzi, A. et al. Elevated serum uric acid is associated with a greater inflammatory response and with short- and long-term mortality in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Nutr. Metab. Cardiovasc. Dis. NMCD 31, 608–614. https://doi.org/10.1016/j.numecd.2020.10.020 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Selvaraj, S. et al. Serum uric acid, influence of sacubitril-valsartan, and cardiovascular outcomes in heart failure with preserved ejection fraction: PARAGON-HF. Eur. J. Heart Fail. 22, 2093–2101. https://doi.org/10.1002/ejhf.1984 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishino, M. et al. Lowering uric acid may improve prognosis in patients with hyperuricemia and heart failure with preserved ejection fraction. J. Am. Heart Assoc. 11, e026301. https://doi.org/10.1161/jaha.122.026301 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ambrosio, G. et al. Serum uric acid and outcomes in patients with chronic heart failure through the whole spectrum of ejection fraction phenotypes: Analysis of the ESC-EORP Heart Failure Long-Term (HFLT) Registry. Eur. J. Intern. Med. 89, 65–75. https://doi.org/10.1016/j.ejim.2021.04.001 (2021).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Ananthram, M. G. & Gottlieb, S. S. Renal dysfunction and heart failure with preserved ejection fraction. Heart Fail. Clin. 17, 357–367. https://doi.org/10.1016/j.hfc.2021.03.005 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Salah, H. M. et al. Relationship of nonalcoholic fatty liver disease and heart failure with preserved ejection fraction. JACC Basic Transl. Sci. 6, 918–932. https://doi.org/10.1016/j.jacbts.2021.07.010 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J., Xu, M., Chen, T. & Zhou, Y. Correlation between liver stiffness and diastolic function, left ventricular hypertrophy, and right cardiac function in patients with ejection fraction preserved heart failure. Front. Cardiovasc. Med. 8, 748173. https://doi.org/10.3389/fcvm.2021.748173 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Disparate clinical characteristics and prognosis of HFpEF versus HFrEF phenotype of diabetic cardiomyopathy. J. Clin. Med. https://doi.org/10.3390/jcm12041565 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galiè, N. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 37, 67–119. https://doi.org/10.1093/eurheartj/ehv317 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Carpio, A. M. et al. Unrecognized pulmonary arterial hypertension in hospitalized patients. Int. J. Cardiovasc. Imaging 37, 1237–1243. https://doi.org/10.1007/s10554-020-02108-9 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echoca rdiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 29, 277–314. https://doi.org/10.1016/j.echo.2016.01.011 (2016).

    Article 

    Google Scholar 

  • Sturdza, A. E. et al. Nomogram predicting overall survival in patients with locally advanced cervical cancer treated with radiochemotherapy including image-guided brachytherapy: A retro-EMBRACE study. Int. J. Radiat. Oncol. Biol. Phys. 111, 168–177. https://doi.org/10.1016/j.ijrobp.2021.04.022 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cummings, P. Missing data and multiple imputation. JAMA Pediatr. 167, 656–661. https://doi.org/10.1001/jamapediatrics.2013.1329 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Alba, A. et al. Discrimination and calibration of clinical prediction models: Users’ guides to the medical literature. JAMA 318, 1377–1384. https://doi.org/10.1001/jama.2017.12126 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kim, J. H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 72, 558–569. https://doi.org/10.4097/kja.19087 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, B. et al. Seipin knockout mice develop heart failure with preserved ejection fraction. JACC Basic Transl. Sci. 4, 924–937. https://doi.org/10.1016/j.jacbts.2019.07.008 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suetomi, T. et al. Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca(2+)/Calmodulin-Dependent Protein Kinase II δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation 138, 2530–2544. https://doi.org/10.1161/circulationaha.118.034621 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4, 44–52. https://doi.org/10.1161/CIRCHEARTFAILURE.109.931451 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Paulus, W. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271. https://doi.org/10.1016/j.jacc.2013.02.092 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450–1488. https://doi.org/10.1093/cvr/cvaa324 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245. https://doi.org/10.1161/circresaha.120.317933 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boralkar, K. et al. Value of neutrophil to lymphocyte ratio and its trajectory in patients hospitalized with acute heart failure and preserved ejection fraction. Am. J. Cardiol. 125, 229–235. https://doi.org/10.1016/j.amjcard.2019.10.020 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Carnicelli, A. P. et al. Elevated uric acid prevalence and clinical outcomes in patients with heart failure with preserved ejection fraction: Insights from RELAX. Am. J. Med. 133, e716–e721. https://doi.org/10.1016/j.amjmed.2020.03.054 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tromp, J. et al. Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 74, 601–612. https://doi.org/10.1016/j.jacc.2019.05.052 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Dixon, D. D., Trivedi, A. & Shah, S. J. Combined post- and pre-capillary pulmonary hypertension in heart failure with preserved ejection fraction. Heart Fail. Rev. 21, 285–297. https://doi.org/10.1007/s10741-015-9523-6 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Thenappan, T., Prins, K. W., Cogswell, R. & Shah, S. J. Pulmonary hypertension secondary to heart failure with preserved ejection fraction. Can. J. Cardiol. 31, 430–439. https://doi.org/10.1016/j.cjca.2014.12.028 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Reddy, Y., Obokata, M., Gersh, B. & Borlaug, B. High prevalence of occult heart failure with preserved ejection fraction among patients with atrial fibrillation and dyspnea. Circulation 137, 534–535. https://doi.org/10.1161/circulationaha.117.030093 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotecha, D. et al. Heart failure with preserved ejection fraction and atrial fibrillation: Vicious twins. J. Am. Coll. Cardiol. 68, 2217–2228. https://doi.org/10.1016/j.jacc.2016.08.048 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Correale, M. et al. Liver disease and heart failure: Back and forth. Eur. J. Intern. Med. 48, 25–34. https://doi.org/10.1016/j.ejim.2017.10.016 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Cohen, J. B. et al. Clinical phenogroups in heart failure with preserved ejection fraction: Detailed phenotypes, prognosis, and response to spironolactone. JACC. Heart Fail. 8, 172–184. https://doi.org/10.1016/j.jchf.2019.09.009 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chirinos, J. A. et al. Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 75, 1281–1295. https://doi.org/10.1016/j.jacc.2019.12.069 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Angulo, P. et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology (Baltimore, Md.) 45, 846–854. https://doi.org/10.1002/hep.21496 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshihisa, A. et al. Liver fibrosis score predicts mortality in heart failure patients with preserved ejection fraction. ESC Heart Fail. 5, 262–270. https://doi.org/10.1002/ehf2.12222 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science (New York, N. Y.) 377, 1399–1406. https://doi.org/10.1126/science.abn0910 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zannad, F. & Rossignol, P. Cardiorenal syndrome revisited. Circulation 138, 929–944. https://doi.org/10.1161/circulationaha.117.028814 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Shah, K. S. & Fang, J. C. Is heart failure with preserved ejection fraction a kidney disorder?. Curr. Hypertens. Rep. 21, 86. https://doi.org/10.1007/s11906-019-0993-0 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kanjanahattakij, N. et al. High right ventricular stroke work index is associated with worse kidney function in patients with heart failure with preserved ejection fraction. Cardiorenal. Med. 8, 123–129. https://doi.org/10.1159/000486629 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katz, D. H., Burns, J. A., Aguilar, F. G., Beussink, L. & Shah, S. J. Albuminuria is independently associated with cardiac remodeling, abnormal right and left ventricular function, and worse outcomes in heart failure with preserved ejection fraction. JACC. Heart Fail. 2, 586–596. https://doi.org/10.1016/j.jchf.2014.05.016 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okuno, K. et al. Effective blood hemoglobin level to predict prognosis in heart failure with preserved left ventricular ejection fraction: Results of the Japanese heart failure syndrome with preserved ejection fraction registry. Heart Vessel. 34, 1168–1177. https://doi.org/10.1007/s00380-019-01349-6 (2019).

    Article 

    Google Scholar 

  • van de Wouw, J. et al. Chronic kidney disease as a risk factor for heart failure with preserved ejection fraction: A focus on microcirculatory factors and therapeutic targets. Front. Physiol. 10, 1108. https://doi.org/10.3389/fphys.2019.01108 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chopra, V. K. & Anker, S. D. Anaemia, iron deficiency and heart failure in 2020: Facts and numbers. ESC Heart Fail. 7, 2007–2011. https://doi.org/10.1002/ehf2.12797 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anker, S. D. et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: An individual patient data meta-analysis. Eur. J. Heart Fail. 20, 125–133. https://doi.org/10.1002/ejhf.823 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • [ad_2]

    Source link