[ad_1]
Collaborators., G. D. a. I. I. a. P. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990â2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789â1858. https://doi.org/10.1016/s0140-6736(18)32279-7 (2018).
van Riet, E. et al. Epidemiology of heart failure: The prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 18, 242â252. https://doi.org/10.1002/ejhf.483 (2016).
Google ScholarÂ
Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559â573. https://doi.org/10.1038/s41569-020-0363-2 (2020).
Google ScholarÂ
Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089â1098. https://doi.org/10.1056/NEJMoa2206286 (2022).
Google ScholarÂ
Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451â1461. https://doi.org/10.1056/NEJMoa2107038 (2021).
Google ScholarÂ
Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chron ic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Associ ation (HFA) of the ESC. Eur. Heart J. 37, 2129â2200. https://doi.org/10.1093/eurheartj/ehw128 (2016).
Google ScholarÂ
Pugliese, N. R. et al. Predicting the transition to and progression of heart failure with preserved ejection fraction: A weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur. J. Prev. Cardiol. 28, 1650â1661. https://doi.org/10.1093/eurjpc/zwaa129 (2021).
Google ScholarÂ
Reddy, Y. N. V., Carter, R. E., Obokata, M., Redfield, M. M. & Borlaug, B. A. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138, 861â870. https://doi.org/10.1161/CIRCULATIONAHA.118.034646 (2018).
Google ScholarÂ
Pieske, B. et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 40, 3297â3317. https://doi.org/10.1093/eurheartj/ehz641 (2019).
Google ScholarÂ
Tadic, M., Cuspidi, C., Calicchio, F., Grassi, G. & Mancia, G. Diagnostic algorithm for HFpEF: How much is the recent consensus applicable in clinical practice?. Heart Fail. Rev. 26, 1485â1493. https://doi.org/10.1007/s10741-020-09966-4 (2021).
Google ScholarÂ
Samson, R. & Le Jemtel, T. Therapeutic stalemate in heart failure with preserved ejection fraction. J. Am. Heart Assoc. 10, e021120. https://doi.org/10.1161/jaha.121.021120 (2021).
Google ScholarÂ
Li, H. et al. Mimicking metabolic disturbance in establishing animal models of heart failure with preserved ejection fraction. Front. Physiol. 13, 879214. https://doi.org/10.3389/fphys.2022.879214 (2022).
Google ScholarÂ
Sanders-van Wijk, S. et al. Proteomic evaluation of the comorbidity-inflammation paradigm in heart failure with preserved ejection fraction: Results From the PROMIS-HFpEF study. Circulation 142, 2029â2044. https://doi.org/10.1161/circulationaha.120.045810 (2020).
Google ScholarÂ
Mishra, S. & Kass, D. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 18, 400â423. https://doi.org/10.1038/s41569-020-00480-6 (2021).
Google ScholarÂ
Pugliese, N. R. et al. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: Implications for future interventions. Cardiovasc. Res. 118, 3536â3555. https://doi.org/10.1093/cvr/cvac133 (2023).
Google ScholarÂ
Silberman, S. et al. Neutrophil-lymphocyte ratio: Prognostic impact in heart surgery. Early outcomes and late survival. Ann. Thorac. Surg. 105, 581â586. https://doi.org/10.1016/j.athoracsur.2017.07.033 (2018).
Google ScholarÂ
Bai, B. et al. High neutrophil to lymphocyte ratio and its gene signatures correlate with diastolic dysfunction in heart failure with preserved ejection fraction. Front. Cardiovasc. Med. 8, 614757. https://doi.org/10.3389/fcvm.2021.614757 (2021).
Google ScholarÂ
Mandurino-Mirizzi, A. et al. Elevated serum uric acid is associated with a greater inflammatory response and with short- and long-term mortality in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Nutr. Metab. Cardiovasc. Dis. NMCD 31, 608â614. https://doi.org/10.1016/j.numecd.2020.10.020 (2021).
Google ScholarÂ
Selvaraj, S. et al. Serum uric acid, influence of sacubitril-valsartan, and cardiovascular outcomes in heart failure with preserved ejection fraction: PARAGON-HF. Eur. J. Heart Fail. 22, 2093â2101. https://doi.org/10.1002/ejhf.1984 (2020).
Google ScholarÂ
Nishino, M. et al. Lowering uric acid may improve prognosis in patients with hyperuricemia and heart failure with preserved ejection fraction. J. Am. Heart Assoc. 11, e026301. https://doi.org/10.1161/jaha.122.026301 (2022).
Google ScholarÂ
Ambrosio, G. et al. Serum uric acid and outcomes in patients with chronic heart failure through the whole spectrum of ejection fraction phenotypes: Analysis of the ESC-EORP Heart Failure Long-Term (HFLT) Registry. Eur. J. Intern. Med. 89, 65â75. https://doi.org/10.1016/j.ejim.2021.04.001 (2021).
Google ScholarÂ
Ananthram, M. G. & Gottlieb, S. S. Renal dysfunction and heart failure with preserved ejection fraction. Heart Fail. Clin. 17, 357â367. https://doi.org/10.1016/j.hfc.2021.03.005 (2021).
Google ScholarÂ
Salah, H. M. et al. Relationship of nonalcoholic fatty liver disease and heart failure with preserved ejection fraction. JACC Basic Transl. Sci. 6, 918â932. https://doi.org/10.1016/j.jacbts.2021.07.010 (2021).
Google ScholarÂ
Zhang, J., Xu, M., Chen, T. & Zhou, Y. Correlation between liver stiffness and diastolic function, left ventricular hypertrophy, and right cardiac function in patients with ejection fraction preserved heart failure. Front. Cardiovasc. Med. 8, 748173. https://doi.org/10.3389/fcvm.2021.748173 (2021).
Google ScholarÂ
Li, Z. et al. Disparate clinical characteristics and prognosis of HFpEF versus HFrEF phenotype of diabetic cardiomyopathy. J. Clin. Med. https://doi.org/10.3390/jcm12041565 (2023).
Google ScholarÂ
Galiè, N. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 37, 67â119. https://doi.org/10.1093/eurheartj/ehv317 (2016).
Google ScholarÂ
Carpio, A. M. et al. Unrecognized pulmonary arterial hypertension in hospitalized patients. Int. J. Cardiovasc. Imaging 37, 1237â1243. https://doi.org/10.1007/s10554-020-02108-9 (2021).
Google ScholarÂ
Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echoca rdiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 29, 277â314. https://doi.org/10.1016/j.echo.2016.01.011 (2016).
Google ScholarÂ
Sturdza, A. E. et al. Nomogram predicting overall survival in patients with locally advanced cervical cancer treated with radiochemotherapy including image-guided brachytherapy: A retro-EMBRACE study. Int. J. Radiat. Oncol. Biol. Phys. 111, 168â177. https://doi.org/10.1016/j.ijrobp.2021.04.022 (2021).
Google ScholarÂ
Cummings, P. Missing data and multiple imputation. JAMA Pediatr. 167, 656â661. https://doi.org/10.1001/jamapediatrics.2013.1329 (2013).
Google ScholarÂ
Alba, A. et al. Discrimination and calibration of clinical prediction models: Usersâ guides to the medical literature. JAMA 318, 1377â1384. https://doi.org/10.1001/jama.2017.12126 (2017).
Google ScholarÂ
Kim, J. H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 72, 558â569. https://doi.org/10.4097/kja.19087 (2019).
Google ScholarÂ
Bai, B. et al. Seipin knockout mice develop heart failure with preserved ejection fraction. JACC Basic Transl. Sci. 4, 924â937. https://doi.org/10.1016/j.jacbts.2019.07.008 (2019).
Google ScholarÂ
Suetomi, T. et al. Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca(2+)/Calmodulin-Dependent Protein Kinase II δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation 138, 2530â2544. https://doi.org/10.1161/circulationaha.118.034621 (2018).
Google ScholarÂ
Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4, 44â52. https://doi.org/10.1161/CIRCHEARTFAILURE.109.931451 (2011).
Google ScholarÂ
Paulus, W. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263â271. https://doi.org/10.1016/j.jacc.2013.02.092 (2013).
Google ScholarÂ
Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450â1488. https://doi.org/10.1093/cvr/cvaa324 (2021).
Google ScholarÂ
Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232â245. https://doi.org/10.1161/circresaha.120.317933 (2021).
Google ScholarÂ
Boralkar, K. et al. Value of neutrophil to lymphocyte ratio and its trajectory in patients hospitalized with acute heart failure and preserved ejection fraction. Am. J. Cardiol. 125, 229â235. https://doi.org/10.1016/j.amjcard.2019.10.020 (2020).
Google ScholarÂ
Carnicelli, A. P. et al. Elevated uric acid prevalence and clinical outcomes in patients with heart failure with preserved ejection fraction: Insights from RELAX. Am. J. Med. 133, e716âe721. https://doi.org/10.1016/j.amjmed.2020.03.054 (2020).
Google ScholarÂ
Tromp, J. et al. Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 74, 601â612. https://doi.org/10.1016/j.jacc.2019.05.052 (2019).
Google ScholarÂ
Dixon, D. D., Trivedi, A. & Shah, S. J. Combined post- and pre-capillary pulmonary hypertension in heart failure with preserved ejection fraction. Heart Fail. Rev. 21, 285â297. https://doi.org/10.1007/s10741-015-9523-6 (2016).
Google ScholarÂ
Thenappan, T., Prins, K. W., Cogswell, R. & Shah, S. J. Pulmonary hypertension secondary to heart failure with preserved ejection fraction. Can. J. Cardiol. 31, 430â439. https://doi.org/10.1016/j.cjca.2014.12.028 (2015).
Google ScholarÂ
Reddy, Y., Obokata, M., Gersh, B. & Borlaug, B. High prevalence of occult heart failure with preserved ejection fraction among patients with atrial fibrillation and dyspnea. Circulation 137, 534â535. https://doi.org/10.1161/circulationaha.117.030093 (2018).
Google ScholarÂ
Kotecha, D. et al. Heart failure with preserved ejection fraction and atrial fibrillation: Vicious twins. J. Am. Coll. Cardiol. 68, 2217â2228. https://doi.org/10.1016/j.jacc.2016.08.048 (2016).
Google ScholarÂ
Correale, M. et al. Liver disease and heart failure: Back and forth. Eur. J. Intern. Med. 48, 25â34. https://doi.org/10.1016/j.ejim.2017.10.016 (2018).
Google ScholarÂ
Cohen, J. B. et al. Clinical phenogroups in heart failure with preserved ejection fraction: Detailed phenotypes, prognosis, and response to spironolactone. JACC. Heart Fail. 8, 172â184. https://doi.org/10.1016/j.jchf.2019.09.009 (2020).
Google ScholarÂ
Chirinos, J. A. et al. Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 75, 1281â1295. https://doi.org/10.1016/j.jacc.2019.12.069 (2020).
Google ScholarÂ
Angulo, P. et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology (Baltimore, Md.) 45, 846â854. https://doi.org/10.1002/hep.21496 (2007).
Google ScholarÂ
Yoshihisa, A. et al. Liver fibrosis score predicts mortality in heart failure patients with preserved ejection fraction. ESC Heart Fail. 5, 262â270. https://doi.org/10.1002/ehf2.12222 (2018).
Google ScholarÂ
Cao, Y. et al. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science (New York, N. Y.) 377, 1399â1406. https://doi.org/10.1126/science.abn0910 (2022).
Google ScholarÂ
Zannad, F. & Rossignol, P. Cardiorenal syndrome revisited. Circulation 138, 929â944. https://doi.org/10.1161/circulationaha.117.028814 (2018).
Google ScholarÂ
Shah, K. S. & Fang, J. C. Is heart failure with preserved ejection fraction a kidney disorder?. Curr. Hypertens. Rep. 21, 86. https://doi.org/10.1007/s11906-019-0993-0 (2019).
Google ScholarÂ
Kanjanahattakij, N. et al. High right ventricular stroke work index is associated with worse kidney function in patients with heart failure with preserved ejection fraction. Cardiorenal. Med. 8, 123â129. https://doi.org/10.1159/000486629 (2018).
Google ScholarÂ
Katz, D. H., Burns, J. A., Aguilar, F. G., Beussink, L. & Shah, S. J. Albuminuria is independently associated with cardiac remodeling, abnormal right and left ventricular function, and worse outcomes in heart failure with preserved ejection fraction. JACC. Heart Fail. 2, 586â596. https://doi.org/10.1016/j.jchf.2014.05.016 (2014).
Google ScholarÂ
Okuno, K. et al. Effective blood hemoglobin level to predict prognosis in heart failure with preserved left ventricular ejection fraction: Results of the Japanese heart failure syndrome with preserved ejection fraction registry. Heart Vessel. 34, 1168â1177. https://doi.org/10.1007/s00380-019-01349-6 (2019).
Google ScholarÂ
van de Wouw, J. et al. Chronic kidney disease as a risk factor for heart failure with preserved ejection fraction: A focus on microcirculatory factors and therapeutic targets. Front. Physiol. 10, 1108. https://doi.org/10.3389/fphys.2019.01108 (2019).
Google ScholarÂ
Chopra, V. K. & Anker, S. D. Anaemia, iron deficiency and heart failure in 2020: Facts and numbers. ESC Heart Fail. 7, 2007â2011. https://doi.org/10.1002/ehf2.12797 (2020).
Google ScholarÂ
Anker, S. D. et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: An individual patient data meta-analysis. Eur. J. Heart Fail. 20, 125â133. https://doi.org/10.1002/ejhf.823 (2018).
Google ScholarÂ
[ad_2]
Source link