[ad_1]
Ellulu, M. S. et al. Atherosclerotic cardiovascular disease: A review of initiators and protective factors. Inflammopharmacology 24, 1â10. https://doi.org/10.1007/s10787-015-0255-y (2016).
Google ScholarÂ
Sanz, J. & Fayad, Z. A. Imaging of atherosclerotic cardiovascular disease. Nature 451(7181), 953â957 (2008).
Google ScholarÂ
Gavrilenko, A. V. et al. Correlation between morphological and biomechanical features and carotid atherosclerosis. Sci. Innov. Med. 7(3), 160â163. https://doi.org/10.35693/2500-1388-2022-7-3-160-163 (2022).
Google ScholarÂ
Soomro, M. K. et al. Assessment of the cardiovascular medication adherence and its related factors in patients with coronary artery angioplasty at Pmc Hospital Nawabshah. J. Peoples Univ. Med. Health Sci. Nawabshah 10(4), 18â21. https://doi.org/10.35693/2500-1388-2022-7-3-160-163 (2020).
Google ScholarÂ
Zardawi, F., Gul, S., Abdulkareem, A., Sha, A. & Yates, J. Association between periodontal disease and atherosclerotic cardiovascular diseases: Revisited. Front. Cardiovasc. Med. 7, 625579. https://doi.org/10.3389/fcvm.2020.625579 (2021).
Google ScholarÂ
Barquera, S. et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res. 328(5), 46. https://doi.org/10.1016/j.arcmed.2015.06.006 (2015).
Google ScholarÂ
Perk, J. et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J. 33(13), 1635â1701. https://doi.org/10.1093/eurheartj/ehs092 (2012).
Google ScholarÂ
Gao, R. & Liu, L. Summary of China cardiovascular disease report 2017. Chin. Circ. J. 33(1), 1â8 (2018).
Ford, E. S., Roger, V. L., Dunlay, S. M., Go, A. S. & Rosamond, W. D. Challenges of ascertaining national trends in the incidence of coronary heart disease in the United States. J. Am. Heart Assoc. 3(6), e001097. https://doi.org/10.1161/JAHA.114.001097 (2014).
Google ScholarÂ
Mehta, R. H. et al. Acute myocardial infarction in the elderly: Differences by age. J. Am. Coll. Cardiol. 38, 736â741. https://doi.org/10.1016/S0735-1097(01)01432-2 (2001).
Google ScholarÂ
Sarrafzadegan, N. & Mohammmadifard, N. Cardiovascular disease in Iran in the last 40 years: Prevalence, mortality, morbidity, challenges and strategies for cardiovascular prevention. Arch. Iran. Med. 22(4), 204â210 (2019).
Google ScholarÂ
Zibaeenejad, F., Mohammadi, S. S., Sayadi, M., Safari, F. & Zibaeenezhad, M. J. Ten-year atherosclerosis cardiovascular disease (ASCVD) risk score and its components among an Iranian population: A cohort-based cross-sectional study. BMC Cardiovasc. Disord. 22(1), 1â8. https://doi.org/10.1186/s12872-022-02601-0 (2022).
Google ScholarÂ
Roth, G. A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 70(1), 1â25. https://doi.org/10.1016/j.jacc.2017.04.052 (2017).
Google ScholarÂ
Ghosh, J. K. & Valtorta, M. Building a Bayesian network model of heart disease. In Proceedings of the 38th Annual on Southeast Regional Conference. https://doi.org/10.1145/1127716.1127770 (2000).
Frenk, J., Bobadilla, J. L., Stern, C., Frejka, T. & Lozano, R. Elements for a theory of transition in health. Salud Publ. Mex 33, 448â462 (1991).
Google ScholarÂ
Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377(2), 111â121. https://doi.org/10.1056/NEJMoa1701719 (2017).
Google ScholarÂ
Rodriguez, F. et al. Atherosclerotic cardiovascular disease risk prediction in disaggregated Asian and Hispanic subgroups using electronic health records. J. Am. Heart Assoc. 8(14), e011874. https://doi.org/10.1161/JAHA.118.011874 (2019).
Google ScholarÂ
Jamialahmadi, T. et al. The effects of statin dose, lipophilicity, and combination of statins plus ezetimibe on circulating oxidized low-density lipoprotein levels: A systematic review and meta-analysis of randomized controlled trials. Mediat. Inflamm. 2021, 12. https://doi.org/10.1155/2021/9661752 (2021).
Google ScholarÂ
Graham, I., Cooney, M.-T., Bradley, D., Dudina, A. & Reiner, Z. Dyslipidemias in the prevention of cardiovascular disease: Risks and causality. Curr. Cardiol. Rep. 14(6), 709â720. https://doi.org/10.1007/s11886-012-0313-7 (2012).
Google ScholarÂ
ElSayed, N. A. et al. 10. Cardiovascular disease and risk management: Standards of care in diabetes-2023. Diabetes Care 46(Suppl 1), S158âS190. https://doi.org/10.2337/dc16-S011 (2023).
Google ScholarÂ
Barquera, S. et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res. 46(5), 328â338. https://doi.org/10.1016/j.arcmed.2015.06.006 (2015).
Google ScholarÂ
Esmaeili, P. et al. Machine learning framework for atherosclerotic cardiovascular disease risk assessment. J. Diabetes Metabol. Disord. 2022, 1â8. https://doi.org/10.1007/s40200-022-01160-7 (2022).
Google ScholarÂ
Berry, J. D. et al. Lifetime risks of cardiovascular disease. N. Engl. J. Med. 366(4), 321â329. https://doi.org/10.1056/NEJMoa1012848 (2012).
Google ScholarÂ
Hong, Y. M. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ. J. 40(1), 1â9. https://doi.org/10.4070/kcj.2010.40.1.1 (2010).
Google ScholarÂ
Kavey, R.-E.W. et al. American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. Circulation 107(11), 1562â1566. https://doi.org/10.1161/01.CIR.0000061521.15730.6E (2003).
Google ScholarÂ
Gæde, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348(5), 383â393. https://doi.org/10.1056/NEJMoa021778 (2003).
Google ScholarÂ
Bahiru, E. et al. Fixed-dose combination therapy for the prevention of atherosclerotic cardiovascular diseases. Cochrane Database Syst. Rev. 2017, 3. https://doi.org/10.1002/14651858.CD009868.pub3 (2017).
Google ScholarÂ
Butz, C. J., Hua, S., Chen, J. & Yao, H. A simple graphical approach for understanding probabilistic inference in Bayesian networks. Inf. Sci. 179(6), 699â716. https://doi.org/10.1016/j.ins.2008.10.036 (2009).
Google ScholarÂ
Fuster-Parra, P. et al. Bayesian network modeling: A case study of an epidemiologic system analysis of cardiovascular risk. Comput. Methods Programs Biomed. 126, 128â142. https://doi.org/10.1016/j.cmpb.2015.12.010 (2016).
Google ScholarÂ
Badawi, A., Di Giuseppe, G., Gupta, A., Poirier, A. & Arora, P. Bayesian network modelling study to identify factors influencing the risk of cardiovascular disease in Canadian adults with hepatitis C virus infection. BMJ Open 10(5), e035867. https://doi.org/10.1136/bmjopen-2019-035867 (2020).
Google ScholarÂ
Shafer, G. Probabilistic Expert Systems (SIAM, 1996).
Google ScholarÂ
Ordovas, J. et al. A Bayesian network model for predicting cardiovascular risk. Comput. Methods Programs Biomed. 2023, 107405. https://doi.org/10.1016/j.cmpb.2023.107405 (2023).
Google ScholarÂ
Kyrimi, E. et al. Bayesian networks in healthcare: What is preventing their adoption?. Artif. Intell. Med. 116, 102079. https://doi.org/10.1016/j.artmed.2021.102079 (2021).
Google ScholarÂ
Farooq, K. et al. An ontology driven and bayesian network based cardiovascular decision support framework. In Advances in Brain Inspired Cognitive Systems: 5th International Conference, BICS 2012, Shenyang, China, July 11â14, 2012 Proceedings (Springer, 2012). https://doi.org/10.1007/978-3-642-31561-9_4.
Twardy, C. R., Nicholson, A. E., Korb, K. & McNeil, J. Knowledge engineering cardiovascular Bayesian networks from the literature. In School of Computer Science & Software Engineering (2005).
Tylman, W. et al. Real-Time prediction of acute cardiovascular events using hardware-implemented Bayesian networks. Comput. Biol. Med. 69, 245â253. https://doi.org/10.1016/j.compbiomed.2015.08.015 (2016).
Google ScholarÂ
Orphanou, K. et al. Risk assessment for primary coronary heart disease event using dynamic Bayesian networks. In Artificial Intelligence in Medicine AIME Lecture Notes In Computer Science 2016 (eds Holmes, J., Bellazzi, R., Sacchi, L. et al.) 161â165 (Springer, 2015). https://doi.org/10.1007/978-3-319-19551-3_20.
Google ScholarÂ
Gomathi, K. & Priyaa, D. S. An efficient coronary heart disease prediction by semi parametric extended dynamic Bayesian network with optimized cut points. ARPN J. Eng. Appl. Sci. 13, 1539â1544 (2018).
Poustchi, H. et al. Prospective epidemiological research studies in Iran (the PERSIAN Cohort Study): Rationale, objectives, and design. Am. J. Epidemiol. 187(4), 647â655. https://doi.org/10.1093/aje/kwx314 (2018).
Google ScholarÂ
Farhang, S. et al. Cohort profile: The AZAR cohort, a health-oriented research model in areas of major environmental change in Central Asia. Int. J. Epidemiol. 48(2), 382. https://doi.org/10.1093/ije/dyy215 (2019).
Google ScholarÂ
Marfell-Jones, M., Olds, T., Stewart, A. & Carter, L. International Standards for Anthropometric Assessment, International Society for the Advancement of Kinanthropometry, Potchefstroom: South Africa. https://doi.org/10.4324/9780203970157 (2006).
National Institutes of Health. The Practical Guide to the Identification, Evaluation and Treatment of Overweight and Obesity in Adults. Bethesda, Maryland: National Institutes of Health (2000).
World Health Organization. Obesity: Preventing and Managing The Global Epidemic (WHO, 1998).
Burgos, M. S. et al. Obesity parameters as predictors of early development of cardiometabolic risk factors. Ciencia Saude Coletiva 20, 2381â2388. https://doi.org/10.1590/1413-81232015208.11672014 (2015).
Google ScholarÂ
Gevers Leuven, J., vd-Voort, H., Kempen, H., de-Wit, E. & Havekes, L. The effect of cyclandelate on cholesterol metabolism in patients with familial hypercholesterolaemia. Drugs 33, 131â135 (1987).
Google ScholarÂ
Robinson, J. G. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285(19), 2486â2497 (2001).
Google ScholarÂ
Robinson, J. G. & Ray, K. Moving toward the next paradigm for cardiovascular prevention. Am. Heart Assoc. 133, 1533â1536. https://doi.org/10.1161/CIRCULATIONAHA.116.022134 (2016).
Google ScholarÂ
Adegoke, O. et al. The impact of sex on blood pressure and anthropometry trajectories from early adulthood in a Nigerian population: Insights into womenâs cardiovascular disease risk across the lifespan. BMC Womenâs Health 2022, 1â9. https://doi.org/10.1186/S12905-022-01888-7 (2022).
Google ScholarÂ
Engin, A. The definition and prevalence of obesity and metabolic syndrome. Obes. Lipotoxicity 2017, 1â17. https://doi.org/10.1007/978-3-319-48382-5 (2017).
Google ScholarÂ
Cui, Y. et al. Nonâhigh-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch. Internal Med. 161(11), 1413â1419. https://doi.org/10.1001/archinte.161.11.1413 (2001).
Google ScholarÂ
Health, N. I. F. & Excellence, C. Type 2 diabetes: Prevention in people at high risk. NICE guideline (PH38). https://www.nice.org.uk/guidance/qs209/chapter/Quality-statement-1-Preventing-type-2-diabetes#:~:text=Many%20cases%20of%20type%202,for%20those%20at%20high%20risk (2012).
Geiger, D., Verma, T. & Pearl, J. d-separation: From theorems to algorithms. Mach. Intell. Pattern Recogn. 10, 139â148. https://doi.org/10.1016/B978-0-444-88738-2.50018-X (1990).
Google ScholarÂ
Jensen, F. V. & Nielsen, T. D. Bayesian Networks and Decision Graphs (Springer Science & Business Media, 2007). https://doi.org/10.1198/tech.2008.s543.
Google ScholarÂ
Korb, K. B. & Nicholson, A. E. Bayesian Artificial Intelligence 2nd edn. (Chapman and Hall/CRC Press, 2010).
Google ScholarÂ
Huang, H. C. & Tsai, C. W. Structure learning in bayesian networks: A comprehensive review. IEEE Trans. Knowl. Data Eng. 31(12), 2275â2293 (2019).
Yanhong, B. M., Bi, Y., Che, X. & Liu, Y. A bayesian network analysis of the probabilistic relationships between various obesity phenotypes and cardiovascular disease risk in Chinese adults: Chinese population-based observational study. JMIR Med. Inf. 10(3), e33026 (2022).
Google ScholarÂ
Badawi, A., Di-Giuseppe, G., Gupta, A., Poirier, A. & Arora, P. Bayesian network modelling study to identify factors influencing the risk of cardiovascular disease in Canadian adults with hepatitis C virus infection. BMJ Open 10(5), e035867. https://doi.org/10.1136/bmjopen-2019-035867 (2020).
Google ScholarÂ
Nicholson, A. E., Twardy, C. R., Korb, K. B. & Hope, L. R. Decision Support for Clinical Cardiovascular Risk Assessment. Bayesian Networks: A Practical Guide to Applications 33â52 (Wiley, 2008). https://doi.org/10.1002/9780470994559.ch3.
Google ScholarÂ
Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques (MIT press, 2009).
Pearl. Aspects of graphical models connected with causality. In Proceedings of 49th Session, International Statistical Institute: Invited papers, Florence: Italy. https://doi.org/10.1002/net.3230200507 (1993).
Spiegelhalter, D. J. & Lauritzen, S. L. Sequential updating of conditional probabilities on directed graphical structures. Networks 20, 579â605 (1990).
Google ScholarÂ
Fuster-Parra, P., Yañez, A. M., López-González, A., Aguiló, A. & Bennasar-Veny, M. Identifying risk factors of developing type 2 diabetes from adult population with initial prediabetes using a Bayesian network. Front. Public Health 10, 5263. https://doi.org/10.3389/fpubh.2022.1035025 (2022).
Google ScholarÂ
Netica. In Wikipedia (2023, accessed 12 Mar 2023). https://en.wikipedia.org/wiki/Netica.
Lee, J. H., Kim, M., Kim, J. H., Cho, B. & Kim, J. Y. Development and validation of a Bayesian network model for coronary heart disease prediction in Korean adults. BMC Cardiovasc. Disord. 21(1), 1â9. https://doi.org/10.1186/s12872-020-01813-6 (2021).
Google ScholarÂ
Zhu, L. et al. Bayesian network analysis of risk factors for stroke in a Chinese population: A hospital-based case-control study. BMC Neurol. 20(1), 1â9 (2020).
Google ScholarÂ
Tzeng, I. S. et al. Predicting major cardiovascular events in hypertensive patients: The role of the Bayesian network model. PloS one 15(7), e0236553 (2020).
Jafari-Nasabian, P. et al. Predicting cardiovascular risk using a Bayesian network model: The case of a large Australian cohort. Sci. Rep. 11(1), 5552. https://doi.org/10.1038/s41598-021-84914-9 (2021).
Google ScholarÂ
Khot, U. N. et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 290(7), 898â904. https://doi.org/10.1001/jama.290.7.898 (2003).
Google ScholarÂ
Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. The Lancet 364(9438), 937â952. https://doi.org/10.1016/S0140-6736(04)17018-9 (2004).
Google ScholarÂ
Lloyd-Jones, D. M. et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Associationâs strategic Impact Goal through 2020 and beyond. Circulation 121(4), 586â613. https://doi.org/10.1161/CIRCULATIONAHA.109.192703 (2010).
Google ScholarÂ
Mendelsohn, M. E. & Karas, R. H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 340(23), 1801â1811. https://doi.org/10.1056/NEJM199906103402306 (2005).
Google ScholarÂ
Lakatta, E. G. & Levy, D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: Links to heart disease. Circulation 107(2), 346â354. https://doi.org/10.1161/01.CIR.0000048893.62841.F7 (2003).
Google ScholarÂ
Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380(1), 11â22. https://doi.org/10.1056/NEJMoa1812792 (2018).
Google ScholarÂ
Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17), 2735â2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404 (2005).
Google ScholarÂ
Barter, P. et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med. 357(13), 1301â1310. https://doi.org/10.1056/NEJMoa064278 (2007).
Google ScholarÂ
[ad_2]
Source link