[ad_1]

  • Berry, C. et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J. Am. Heart Assoc. 8, e011104 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mihatov, N., Januzzi, J. L. Jr & Gaggin, H. K. Type 2 myocardial infarction due to supply-demand mismatch. Trends Cardiovasc. Med. 27, 408–417 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). J. Am. Coll. Cardiol. 72, 2231–2264 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Circulation 138, e618–e651 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P. & Al-Lamee, R. Mortality from ischemic heart disease. Circ. Cardiovasc. Qual. Outcomes 12, e005375 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vedin, O. et al. Significance of ischemic heart disease in patients with heart failure and preserved, midrange, and reduced ejection fraction: a nationwide cohort study. Circ. Heart Fail. 10, e003875 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Shah, S. J. et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 39, 3439–3450 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • John, J. E. et al. Coronary artery disease and heart failure with preserved ejection fraction: the ARIC study. J. Am. Heart Assoc. 11, e021660 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elgendy, I. Y. & Pepine, C. J. Heart failure with preserved ejection fraction: is ischemia due to coronary microvascular dysfunction a mechanistic factor? Am. J. Med. 132, 692–697 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elgendy, I. Y., Mahtta, D. & Pepine, C. J. Medical therapy for heart failure caused by ischemic heart disease. Circ. Res. 124, 1520–1535 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marwick, T. H. Ejection fraction pros and cons: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2360–2379 (2018).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Chapman, A. R. et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation 137, 1236–1245 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, C. Stable coronary syndromes: the case for consolidating the nomenclature of stable ischemic heart disease. Circulation 136, 437–439 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Reynolds, H. R. et al. Coronary arterial function and disease in women with no obstructive coronary arteries. Circ. Res. 130, 529–551 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herscovici, R. et al. Ischemia and no obstructive coronary artery disease (INOCA): what is the risk? J. Am. Heart Assoc. 7, e008868 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christiansen, M. N. et al. Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012. Circulation 135, 1214–1223 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Srivaratharajah, K. et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ. Heart Fail. 9, e002562 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016 — 40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersson, C. & Vasan, R. S. Epidemiology of heart failure with preserved ejection fraction. Heart Fail. Clin. 10, 377–388 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashokprabhu, N. D., Quesada, O., Alvarez, Y. R. & Henry, T. D. INOCA/ANOCA: mechanisms and novel treatments. Am. Heart J. 30, 100302 (2023).

    Google Scholar 

  • Schirone, L. et al. An overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Cells 11, 1165 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, S. et al. Noncoding RNAs in cardiovascular disease: current knowledge, tools and technologies for investigation, and future directions: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 13, e000062 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Santovito, D. & Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat. Rev. Cardiol. 19, 620–638 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frantz, S., Hundertmark, M. J., Schulz-Menger, J., Bengel, F. M. & Bauersachs, J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur. Heart J. 43, 2549–2561 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, Y. et al. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol. Ther. 29, 2253–2267 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spencer, H. L. et al. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc. Res. 116, 1981–1994 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, N., Nong, X., Diao, J. & Yang, G. piRNA-6426 increases DNMT3B-mediated SOAT1 methylation and improves heart failure. Aging 14, 2678–2694 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, X. Q. et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 22, 1319–1331 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajan, K. S. et al. Abundant and altered expression of PIWI-interacting RNAs during cardiac hypertrophy. Heart Lung Circ. 25, 1013–1020 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Sun, Y. H., Lee, B. & Li, X. Z. The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm. Genome 33, 293–311 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kufel, J. & Grzechnik, P. Small nucleolar RNAs tell a different tale. Trends Genet. 35, 104–117 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Ingen, E. et al. C/D box snoRNA SNORD113-6 guides 2′-O-methylation and protects against site-specific fragmentation of tRNALeu(TAA) in vascular remodeling. Mol. Ther. Nucleic Acids 30, 162–172 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brameier, M., Herwig, A., Reinhardt, R., Walter, L. & Gruber, J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jagielski, N. P., Rai, A. K., Rajan, K. S., Mangal, V. & Garikipati, V. N. S. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. Mol. Ther. Nucleic Acids 35, 102087 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valkov, N. & Das, S. Y RNAs: biogenesis, function and implications for the cardiovascular system. Adv. Exp. Med. Biol. 1229, 327–342 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Extracellular vesicle-encapsulated adeno-associated viruses for therapeutic gene delivery to the heart. Circulation 148, 405–425 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuhle, B., Chen, Q. & Schimmel, P. tRNA renovatio: rebirth through fragmentation. Mol. Cell 83, 3953–3971 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Q. et al. tRNA-derived small non-coding RNAs in response to ischemia inhibit angiogenesis. Sci. Rep. 6, 20850 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, L. et al. A novel class of tRNA-derived small non-coding RNAs respond to myocardial hypertrophy and contribute to intergenerational inheritance. Biomolecules 8, 54 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nojima, T. & Proudfoot, N. J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol. 23, 389–406 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y., Syed, J. & Sugiyama, H. RNA–DNA triplex formation by long noncoding RNAs. Cell Chem. Biol. 23, 1325–1333 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritter, N. et al. The lncRNA locus handsdown regulates cardiac gene programs and is essential for early mouse development. Dev. Cell 50, 644–657.e8 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balas, M. M. et al. Establishing RNA–RNA interactions remodels lncRNA structure and promotes PRC2 activity. Sci. Adv. 7, eabc9191 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells. Development 148, dev199628 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, J. et al. Long noncoding RNA ahit protects against cardiac hypertrophy through SUZ12 (suppressor of Zeste 12 protein homolog)-mediated downregulation of MEF2A (myocyte enhancer factor 2A). Circ. Heart Fail. 13, e006525 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saldana-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ounzain, S. et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell Cardiol. 89, 98–112 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Micheletti, R. et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl. Med. 9, eaai9118 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plaisance, I. et al. A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification. Cardiovasc. Res. 119, 1361–1376 (2022).

    Article 
    PubMed Central 

    Google Scholar 

  • Ward, Z., Pearson, J., Schmeier, S., Cameron, V. & Pilbrow, A. Insights into circular RNAs: their biogenesis, detection, and emerging role in cardiovascular disease. RNA Biol. 18, 2055–2072 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barrett, S. P. & Salzman, J. Circular RNAs: analysis, expression and potential functions. Development 143, 1838–1847 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Exon–intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Li, X. et al. lncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol. Ther. Nucleic Acids 17, 297–309 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. et al. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction. Cell Death Discov. 7, 84 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, S. et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139, 2857–2876 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garikipati, V. N. S. et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat. Commun. 10, 4317 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alarcon, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chamorro-Jorganes, A. et al. METTL3 regulates angiogenesis by modulating let-7e-5p and miRNA-18a-5p expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 41, e325–e337 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L. et al. m6A methylation in cardiovascular diseases: from mechanisms to therapeutic potential. Front. Genet. 13, 908976 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. et al. N6-methyladenosine modification opens a new chapter in circular RNA biology. Front. Cell Dev. Biol. 9, 709299 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sweaad, W. K. et al. Relevance of N6-methyladenosine regulators for transcriptome: implications for development and the cardiovascular system. J. Mol. Cell Cardiol. 160, 56–70 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cusenza, V. Y., Tameni, A., Neri, A. & Frazzi, R. The lncRNA epigenetics: the significance of m6A and m5C lncRNA modifications in cancer. Front. Oncol. 13, 1063636 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marceca, G. P. et al. MiREDiBase, a manually curated database of validated and putative editing events in microRNAs. Sci. Data 8, 199 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Kwast, R. et al. Adenosine-to-inosine editing of vasoactive microRNAs alters their targetome and function in ischemia. Mol. Ther. Nucleic Acids 21, 932–953 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding. RNA 19, 1525–1536 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kokot, K. E. et al. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res. Cardiol. 117, 32 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vlachogiannis, N. I. et al. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J. Mol. Cell Cardiol. 160, 111–120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novikova, I. V., Hennelly, S. P. & Sanbonmatsu, K. Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40, 5034–5051 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gong, J. et al. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Res. 45, D79–D84 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caporali, A. et al. p75NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat. Commun. 6, 8024 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, Y. J. et al. Extracellular microRNA-92a mediates endothelial cell–macrophage communication. Arterioscler. Thromb. Vasc. Biol. 39, 2492–2504 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ. Res. 128, e1–e23 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mathiyalagan, P. et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb. Circ. Res. 120, 1466–1476 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, F. et al. Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice. Mol. Ther. Nucleic Acids 24, 951–960 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeppesen, D. K., Zhang, Q., Franklin, J. L. & Coffey, R. J. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 33, 667–681 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emanueli, C. et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS ONE 11, e0154274 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, D. et al. Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Theranostics 9, 4494–4507 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H. et al. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J. Exp. Med. 216, 2202–2220 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H. et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res. Ther. 11, 224 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freeman, D. W. et al. Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes 67, 2377–2388 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cable, J. et al. Exosomes, microvesicles, and other extracellular vesicles-a Keystone Symposia report. Ann. N. Y. Acad. Sci. 1523, 24–37 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ben-Aicha, S. et al. High-density lipoprotein remodelled in hypercholesterolaemic blood induce epigenetically driven down-regulation of endothelial HIF-1α expression in a preclinical animal model. Cardiovasc. Res. 116, 1288–1299 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. et al. Transfer of functional cargo in exomeres. Cell Rep. 27, 940–954 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davidson, S. M. et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc. Res. 119, 45–63 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • exRNA Atlas: data, tools & computable knowledge. https://exrna-atlas.org (US National Instiutes of Health, 2024).

  • Murillo, O. D. et al. exRNA atlas analysis reveals distinct extracellular rna cargo types and their carriers present across human biofluids. Cell 177, 463–477 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rozowsky, J. et al. exceRpt: a comprehensive analytic platform for extracellular RNA profiling. Cell Syst. 8, 352–357 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T. & Lowenstein, C. J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl Acad. Sci. USA 105, 1516–1521 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heymans, S. et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128, 1420–1432 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bang, C. et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136–2146 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foinquinos, A. et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat. Commun. 11, 633 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ucar, A. et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 3, 1078 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Lei, Z. et al. miR-132/212 impairs cardiomyocytes contractility in the failing heart by suppressing SERCA2a. Front. Cardiovasc. Med. 8, 592362 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batkai, S. et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur. Heart J. 42, 192–201 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909–914 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rawal, S. et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc. Res. 113, 90–101 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masson, S. et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur. J. Heart Fail. 20, 78–85 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, J. P. et al. Exosomal microRNAs miR-30d-5p and miR-126a-5p are associated with heart failure with preserved ejection fraction in STZ-induced type 1 diabetic rats. Int. J. Mol. Sci. 23, 7514 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hinkel, R. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128, 1066–1075 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abplanalp, W. T. et al. Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid Ther. 30, 335–345 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Porrello, E. R. et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 109, 670–679 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Besnier, M. et al. miR-15a/-16 inhibit angiogenesis by targeting the Tie2 coding sequence: therapeutic potential of a miR-15a/16 decoy system in limb ischemia. Mol. Ther. Nucleic Acids 17, 49–62 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spinetti, G. et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335–346 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. et al. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ. Res. 117, 450–459 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, W. et al. Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat. Commun. 9, 700 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res. 112, 1557–1566 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, Y. et al. A microRNA–Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 7, 279ra238 (2015).

    Article 

    Google Scholar 

  • Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gabisonia, K. et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ounzain, S. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. 36, 353–368 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ballantyne, M. D. et al. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation 133, 2050–2065 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, R. D. et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler. Thromb. Vasc. Biol. 34, 1249–1259 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martens, C. R., Bansal, S. S. & Accornero, F. Cardiovascular inflammation: RNA takes the lead. J. Mol. Cell Cardiol. 129, 247–256 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M., Gu, H., Xu, W. & Zhou, X. Down-regulation of lncRNA MALAT1 reduces cardiomyocyte apoptosis and improves left ventricular function in diabetic rats. Int. J. Cardiol. 203, 214–216 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377–1388 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, B. et al. The long noncoding RNA CAREL controls cardiac regeneration. J. Am. Coll. Cardiol. 72, 534–550 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ponnusamy, M. et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139, 2668–2684 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol. Ther. 27, 29–45 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piccoli, M. T. et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res. 121, 575–583 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aghagolzadeh, P. et al. Assessment of the cardiac noncoding transcriptome by single-cell RNA sequencing identifies FIXER, a conserved profibrogenic long noncoding RNA. Circulation 148, 778–797 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Q. et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct. Target. Ther. 8, 99 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alhamadani, F. et al. Adverse drug reactions and toxicity of the food and drug administration-approved antisense oligonucleotide drugs. Drug Metab. Dispos. 50, 879–887 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khorkova, O. et al. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin. Drug Discov. 18, 1011–1029 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, K. R. Q. & Yokota, T. Invention and early history of gapmers. Methods Mol. Biol. 2176, 3–19 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vasquez, G. et al. Site-specific incorporation of 5′-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Res. 49, 1828–1839 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D., Mastaglia, F. L., Fletcher, S. & Wilton, S. D. Precision medicine through antisense oligonucleotide-mediated exon skipping. Trends Pharmacol. Sci. 39, 982–994 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Gramlich, M. et al. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol. Med. 7, 562–576 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plaisance, I. et al. A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification. Cardiovasc. Res. 119, 1361–1376 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kramer, M. C. et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168–2182 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. M., Zhou, J., Mao, Y., Ji, Q. & Qian, S. B. Programmable RNA N6-methyladenosine editing by CRISPR–Cas9 conjugates. Nat. Chem. Biol. 15, 865–871 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nose, K., Hidaka, K., Yano, T., Tomita, Y. & Fukuda, M. Short-chain guide RNA for site-directed A-to-I RNA editing. Nucleic Acid Ther. 31, 58–67 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khosravi, H. M. & Jantsch, M. F. Site-directed RNA editing: recent advances and open challenges. RNA Biol. 18, 41–50 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W. & Hare, J. M. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ. Res. 120, 1139–1150 (2017).

    Article 
    PubMed 

    Google Scholar 

  • von Degenfeld, G. et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J. Am. Coll. Cardiol. 42, 1120–1128 (2003).

    Article 

    Google Scholar 

  • Mavropoulos, S. A., Yamada, K. P., Sakata, T. & Ishikawa, K. Cardiac gene delivery in large animal models: antegrade techniques. Methods Mol. Biol. 2573, 147–158 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, L. et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712–1730 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kikuchi, K., McDonald, A. D., Sasano, T. & Donahue, J. K. Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation 111, 264–270 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kopechek, J. A. et al. Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function. Theranostics 9, 7088–7098 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clarke, D. E., Pashuck, E. T., Bertazzo, S., Weaver, J. V. M. & Stevens, M. M. Self-healing, self-assembled beta-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels. J. Am. Chem. Soc. 139, 7250–7255 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, J. et al. Microneedle patch loaded with exosomes containing microRNA-29b prevents cardiac fibrosis after myocardial infarction. Adv. Healthc. Mater. 12, e2202959 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Greenberg, B. et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387, 1178–1186 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katz, M. G., Fargnoli, A. S., Weber, T., Hajjar, R. J. & Bridges, C. R. Use of adeno-associated virus vector for cardiac gene delivery in large-animal surgical models of heart failure. Hum. Gene Ther. Clin. Dev. 28, 157–164 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, M. et al. RNAi-mediated rheostat for dynamic control of AAV-delivered transgenes. Nat. Commun. 14, 1970 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bozoglu, T. et al. Endothelial retargeting of AAV9 in vivo. Adv. Sci. 9, e2103867 (2022).

    Article 

    Google Scholar 

  • Zhang, H., Zhan, Q., Huang, B., Wang, Y. & Wang, X. AAV-mediated gene therapy: advancing cardiovascular disease treatment. Front. Cardiovasc. Med. 9, 952755 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yue, R. et al. Mesenchymal stem cell-derived exosomal microRNA-182-5p alleviates myocardial ischemia/reperfusion injury by targeting GSDMD in mice. Cell Death Discov. 8, 202 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aggarwal, R. et al. Surgical porcine model of chronic myocardial ischemia treated by exosome-laden collagen patch and off-pump coronary artery bypass graft. J. Vis. Exp. https://doi.org/10.3791/65553 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Cheng, G., Zhu, D., Huang, K. & Caranasos, T. G. Minimally invasive delivery of a hydrogel-based exosome patch to prevent heart failure. J. Mol. Cell Cardiol. 169, 113–121 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herrera-Barrera, M. et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 9, eadd4623 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naidu, G. S. et al. A combinatorial library of lipid nanoparticles for cell type-specific mRNA delivery. Adv. Sci. 10, e2301929 (2023).

    Article 

    Google Scholar 

  • Hald Albertsen, C. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ge, X., Chen, L., Zhao, B. & Yuan, W. Rationale and application of PEGylated lipid-based system for advanced target delivery of siRNA. Front. Pharmacol. 11, 598175 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scognamiglio, I. et al. Transferrin-conjugated SNALPs encapsulating 2′-O-methylated miR-34a for the treatment of multiple myeloma. Biomed. Res. Int. 2014, 217365 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lou, J. et al. Reactive oxygen species (ROS) activated liposomal cell delivery using a boronate-caged guanidine lipid. Chemistry 28, e202201057 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05350969 (2024).

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03603431 (2019).

  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article 

    Google Scholar 

  • Schulte, C. et al. Serial measurements of protein and microRNA biomarkers to specify myocardial infarction subtypes. J. Mol. Cell Cardiol. 1, 100014 (2022).

    Google Scholar 

  • D’Alessandra, Y. et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 31, 2765–2773 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanco-Dominguez, R. et al. A novel circulating MicroRNA for the detection of acute myocarditis. N. Engl. J. Med. 384, 2014–2027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koch, C. et al. Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers. Nat. Nanotechnol. 18, 1483–1491 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almaghrbi, H., Giordo, R., Pintus, G. & Zayed, H. Non-coding RNAs as biomarkers of myocardial infarction. Clin. Chim. Acta 540, 117222 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lalem, T. & Devaux, Y. Circulating microRNAs to predict heart failure after acute myocardial infarction in women. Clin. Biochem. 70, 1–7 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, Z. J. et al. Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol. Ther. Nucleic Acids 26, 828–848 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devaux, Y. et al. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ. Cardiovasc. Genet. 6, 290–298 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scrutinio, D., Conserva, F., Guida, P. & Passantino, A. Long-term prognostic potential of microRNA-150-5p in optimally treated heart failure patients with reduced ejection fraction: a pilot study. Minerva Cardiol. Angiol. 70, 439–446 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Abu-Halima, M. et al. Micro-RNA 150-5p predicts overt heart failure in patients with univentricular hearts. PLoS ONE 14, e0223606 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, X., Zhang, S. & Huo, Z. Serum circulating miR-150 is a predictor of post-acute myocardial infarction heart failure. Int. Heart J. 60, 280–286 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aonuma, T. et al. MiR-150 attenuates maladaptive cardiac remodeling mediated by long noncoding RNA MIAT and directly represses profibrotic Hoxa4. Circ. Heart Fail. 15, e008686 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawaguchi, S. et al. SPRR1A is a key downstream effector of MiR-150 during both maladaptive cardiac remodeling in mice and human cardiac fibroblast activation. Cell Death Dis. 14, 446 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aonuma, T. et al. Cardiomyocyte microRNA-150 confers cardiac protection and directly represses proapoptotic small proline-rich protein 1A. JCI Insight 6, e150405 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, Y. et al. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc. Res. 106, 387–397 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J. Biol. Chem. 288, 23586–23596 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, J. et al. Circulating miR-30d predicts survival in patients with acute heart failure. Cell. Physiol. Biochem. 41, 865–874 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Melman, Y. F. et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study. Circulation 131, 2202–2216 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vausort, M. et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J. Am. Coll. Cardiol. 68, 1247–1248 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Salgado-Somoza, A., Zhang, L., Vausort, M. & Devaux, Y. The circular RNA MICRA for risk stratification after myocardial infarction. Int. J. Cardiol. Heart Vasc. 17, 33–36 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Badimon, L. et al. Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovasc. Res. 117, 1823–1840 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Firat, H. et al. FIMICS: a panel of long noncoding RNAs for cardiovascular conditions. Heliyon 9, e13087 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sopic, M. et al. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res. Cardiol. 118, 16 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jusic, A., Stellos, K., Ferreira, L., Baker, A. H. & Devaux, Y. (Epi)transcriptomics in cardiovascular and neurological complications of COVID-19. J. Mol. Cell Cardiol. 1, 100013 (2022).

    Google Scholar 

  • Vausort, M. et al. Regulation of N6-methyladenosine after myocardial infarction. Cells 11, 2271 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, E. L., Emanueli, C., Martelli, F. & Devaux, Y. Leveraging non-coding RNAs to fight cardiovascular disease: the EU-CardioRNA network. Eur. Heart J. 42, 4881–4883 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Gonzalo-Calvo, D. et al. Consensus guidelines for the validation of qRT-PCR assays in clinical research by the CardioRNA consortium. Mol. Ther. Methods Clin. Dev. 24, 171–180 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Gonzalo-Calvo, D., Perez-Boza, J., Curado, J., Devaux, Y. & EU-CardioRNA COST Action CA17129. Challenges of microRNA-based biomarkers in clinical application for cardiovascular diseases. Clin. Transl. Med. 12, e585 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Gonzalo-Calvo, D., Sopic, M., Devaux, Y. & EU-CardioRNA COST Action CA17129. Methodological considerations for circulating long noncoding RNA quantification. Trends Mol. Med. 28, 616–618 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lakkisto, P. et al. Development of circulating microRNA-based biomarkers for medical decision-making: a friendly reminder of what should NOT be done. Crit. Rev. Clin. Lab. Sci. 60, 141–152 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vanhaverbeke, M. et al. Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: a position paper from the EU-CardioRNA COST action CA17129. Cardiovasc. Res. 118, 3183–3197 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schuldt, A. Great expectations of small RNAs. Nat. Rev. Mol. Cell Biol. 11, 676 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Thum, T. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hullinger, T. G. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ramanujam, D. et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation 143, 1513–1525 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiao, L. et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J. Clin. Invest. 129, 2237–2250 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hinkel, R. et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J. Am. Coll. Cardiol. 75, 1788–1800 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mayourian, J. et al. Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ. Res. 122, 933–944 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Rosa, S. et al. Transcoronary concentration gradients of circulating microRNAs in heart failure. Eur. J. Heart Fail. 20, 1000–1010 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Galluzzo, A. et al. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. Esc. Heart Fail. 8, 2907–2919 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, M. et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc. Res. 105, 340–352 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boxhammer, E. et al. MicroRNA-30d-5p-A potential new therapeutic target for prevention of ischemic cardiomyopathy after myocardial infarction. Cells 12, 2369 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Targeting miR-30d reverses pathological cardiac hypertrophy. EBioMedicine 81, 104108 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hua, C. C., Liu, X. M., Liang, L. R., Wang, L. F. & Zhong, J. C. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases. Front. Cardiovasc. Med. 8, 784044 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsushima, S. & Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309, H1375–H1389 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seeger, T. & Boon, R. A. MicroRNAs in cardiovascular ageing. J. Physiol. 594, 2085–2094 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, J. N. et al. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci. Rep. 7, 11879 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rogg, E. M. et al. Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action. Circulation 138, 2545–2558 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, W. & Li, X. Liquid biopsy in coronary heart disease. Methods Mol. Biol. 2695, 279–293 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jakob, P. et al. Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126, 2962–2975 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matkovich, S. J. et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res. 106, 166–175 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, S. et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122, S124–S131 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaccagnini, G. et al. Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death Dis. 12, 435 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cambier, L. et al. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol. Med. 9, 337–352 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Busscher, D., Boon, R. A. & Juni, R. P. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin. Sci. 136, 1157–1178 (2022).

    Article 

    Google Scholar 

  • Boulberdaa, M. et al. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol. Ther. 24, 978–990 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatt, D. L., Lopes, R. D. & Harrington, R. A. Diagnosis and treatment of acute coronary syndromes: a review. JAMA 327, 662–675 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Mukherjee, D. Myocardial infarction with nonobstructive coronary arteries: a call for individualized treatment. J. Am. Heart Assoc. 8, e013361 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Byrne, R. A. et al. 2023 ESC guidelines for the management of acute coronary syndromes. Eur. Heart J. 44, 3720–3826 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • [ad_2]

    Source link